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MSC.Software Corporation, the 
worldwide leader in rubber analysis,
would like to share some of our
experiences and expertise in analyzing
elastomers with you.

This White Paper introduces you to the
nonlinear finite element analysis (FEA) 
of rubber-like polymers generally grouped
under the name “elastomers.” You may
have a nonlinear rubber problem—and
not even know it…

The Paper is primarily intended for two
types of readers:

ENGINEERING MANAGERS who are
involved in manufacturing of elastomeric
components, but do not currently possess
nonlinear FEA tools, or who may have an
educational/professional background
other than mechanical engineering.

DESIGN ENGINEERS who are perhaps 
familiar with linear, or even nonlinear,
FEA concepts, but would like to know
more about analyzing elastomers.

It is assumed that the reader is familiar
with basic principles in strength of
materials theory.

This White Paper is a complement to
MSC.Software’s White Paper on
Nonlinear FEA, which introduces the
reader to nonlinear FEA methods and also
includes metal forming applications.

The contents of this White Paper are
intentionally organized for the
convenience of these two kinds of readers. 

For an “Engineering Manager,” topics of
interest include an Executive Summary
to get an overview of the subject, the Case
Studies to see some real-world rubber FEA
applications, and any other industry
specific topics.

The “Design Engineer,” on the other
hand, can examine the significant
features on analysis of elastomers (which
constitute the bulk of the Paper). The

Appendices describe the physics and
mechanical properties of rubber, proper
modeling of incompressibility in rubber
FEA, and most importantly, testing
methods for determination of material
properties. Simulation issues and useful
hints are found throughout the text and
in the Case Studies.

Rubber FEA is an extensive subject, which
involves rubber chemistry, manufacturing
processes, material characterization, finite
element theory, and the latest advances in
computational mechanics. A selected list
of Suggestions for Further Reading is
included. These references cite some of
the most recent research on FEA of
elastomers and demonstrate practical
applications. They are categorized by
subject for the reader’s convenience.
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This white paper discusses

the salient features

regarding the mechanics

and finite element

analysis (FEA) of

elastomers. Although the

main focus of the paper is

on elastomers (or rubber-

like materials) and foams,

many of these concepts

are also applicable to the FEA of glass, plastics, and

biomaterials. Therefore, this White Paper should be

of value not only to the rubber and tire industries,

but also to those involved in the following:

•  Glass, plastics,

ceramic, and solid

propellant industries

•  Biomechanics and the

medical/dental

professions—implantable

surgery devices,

prostheses, orthopedics,

orthodontics, dental

implants, artificial limbs,

artificial organs,

wheelchairs and beds, monitoring equipment

•  Highway safety and flight safety—seat belt

design, impact analysis, seat and padding design,

passenger protection

•  Packaging industry

•  Sports and consumer

industries—helmet

design, shoe design,

athletic protection gear,

sports equipment safety.

Elastomers are used

extensively in many

industries because of their

wide availability and low cost. They are also used

because of their excellent damping and energy

absorption characteristics, flexibility, resiliency,

long service life, ability to seal against moisture,

heat, and pressure, non-toxic properties,

moldability, and variable stiffness.

Rubber is a very unique material.

During processing and shaping, it

behaves mostly like a highly

viscous fluid. After its polymer

chains have been crosslinked by

vulcanization (or by curing),

rubber can undergo large reversible

elastic deformations. Unless

damage occurs, it will return to its

original shape

after removal of the load.

Proper analysis of rubber

components requires  special

material modeling and nonlinear

finite element

analysis tools that

are quite different

than those used for

metallic parts. The

unique properties of

rubber are such that:

1.  It can undergo large

deformations under load,

sustaining strains of up to 500

percent in

engineering applications.

2.  Its load-extension behavior is

markedly nonlinear.

3.  Because it is

viscoelastic, it

exhibits

significant

damping

properties. Its

behavior is time-

and temperature-dependent,

making it similar to glass and

plastics in 

this respect.

4.  It is nearly incompressible.

This means its volume does not

change appreciably with stress. It

cannot be compressed significantly

under hydrostatic load.

For certain foam rubber materials, the assumption

of near incompressibility is relaxed, since large

volume change can be achieved by the application

of relatively moderate stresses.

E X E C U T I V E
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SHOCK MOUNT

CAR TIRE

O-RING

CAR DOOR SEAL

RUBBER BOOT
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The nonlinear FEA program, MSC.Marc (Marc)

possesses specially-formulated elements, material and

friction models, and automated contact analysis

procedures to model elastomers. Capabilities and

uniqueness of Marc in analyzing large, industry-scale

problems are highlighted throughout this White Paper.

Efficient and realistic analysis for design of 

elastomeric products relies on several important

concepts outlined below:

1.  Nonlinear material behavior—

compressible or incompressible material

models, time and temperature effects, 

presence of anisotropy due to fillers or fibers,

hysteresis due to cyclic loading and

manifestation of instabilities.

2.  Automatic

determination of

material parameters

from test data—

perhaps the single most

troublesome step for most

engineers in analyzing

elastomers; that is, 

how to "curve fit" 

test data and derive

parameters necessary to 

characterize material.

3. Failure—causes and

analysis of failure resulting due to 

material damage and degradation, 

cracking, and debonding.

4.  Dynamics—shock and vibration isolation

concerns, damping, harmonic analysis of

viscoelastic materials, time versus frequency

domain viscoelastic analysis, and implicit

versus explicit direct time integration methods.

5. Modern automated contact analysis

techniques—friction effects, and the use of

“contact bodies” to handle boundary conditions

at an interface.

6. Automated solution strategies—issues

related to model preparation, nonlinear

analysis, parallelization and ease-of-use of the

simulation software.

7. Automated

Remeshing and

Rezoning - for

effective solution of

problems involving

heavily distorted

meshes which 

can lead to 

premature termination

of analysis.

MSC.Software offers a well-balanced combination of

sophisticated analysis code integrated seamlessly with

easy-to-use Graphical User Interface (GUI) MSC.Marc

Mentat and increasingly with MSC.Patran, for the

simulation of elastomeric products.  This makes Marc

uniquely suitable for the simulation of complex physics

of rubber, foam,

plastics, and

biomaterials.  The

following sections

briefly explains the

‘insides’ of a

nonlinear FEA code

(and its differences

from a linear FEA

program) along with

the accompanying

GUI capabilities.

THE FINITE ELEMENT METHOD

The finite element method is a computer-aided

engineering technique for obtaining approximate

numerical solutions to boundary value problems

which predict the response of physical systems

subjected to external loads. It is based on the

principle of virtual work. One approximation method

is the so-called weighted residuals method, the most

popular example of which is the Galerkin method

(see any of the finite element texts listed in the

Suggestions for Further Reading section at the

back). A structure is idealized as many small, discrete

pieces called finite elements, which are connected at

nodes. In finite element analysis, thousands of

simultaneous equations are typically solved using 

computers. In

structural analysis,

the unknowns are

the nodal degrees of

freedom, like

displacements,

rotations, or the

hydrostratic pressure.

HISTORY OF NONLINEAR AND

RUBBER FEA

A recent National Research Council report on

computational mechanics research needs in the 1990s

[Oden, 1991] emphasized that the “materials” field is a

national critical technology for the United States, and

that areas such as damage, crack initiation and

propagation, nonlinear analysis, and coupled field

problems still require extensive research.

Before embarking on the issues related to the material

behavior, it is interesting to review how the finite

element method has matured in the past sixty

years–paying special attention to recent improvements

in nonlinear FEA techniques for handling rubber 

contact problems:

1943 Applied mathematician Courant used triangular

elements to solve a torsion problem.

1947 Prager and Synge used triangular elements 

to solve a 2-D elasticity problem using the 

“hypercircle method.”

1954-55 Argyris published work on energy methods 

in structural analysis (creating the “Force Method” 

of FEA).

1956 Classical paper on the “Displacement (Stiffness)

Method” of FEA by Turner, Clough, Martin, and Topp

(using triangles).

1960 Clough first coined the term “Finite 

Element Method.”

1965 Herrmann developed first “mixed method”

solution for incompressible and nearly incompressible

isotropic materials.

E X E C U T I V E S U M M A R Y

1956: TRIANGULAR ELEMENT

1970S: GAP ELEMENTS



1968 Taylor, Pister, and Herrmann extended

Herrmann’s work to orthotropic materials. S.W. Key

extended it to anisotropy [1969].

1971 First release of MARC—the world’s

first commercial, nonlinear general-

purpose FEA code.

1970s – today Most FEA codes claiming ability to

analyze contact problems use “gap” or “interface”

elements. (The user needs to know a priori where to

specify these interface elements—not an easy task!)

1974 MARC introduced Mooney-Rivlin model 

and special Herrmann elements to analyze

incompressible behavior.

1979 Special viscoelastic models for harmonic analysis

to model damping behavior introduced by MARC.

Generalized Maxwell model added shortly thereafter.

1985 Oden and Martins published comprehensive

treatise on modeling and computational issues for

dynamic friction phenomena.

MARC pioneered use of rigid or deformable contact

bodies in an automated solution procedure to solve 2-D

variable contact problems--typically found in metal

forming and rubber applications. Also, first introduction

of large-strain viscoelastic capabilities for rubber

materials by MARC.

1988 Oden and Kikuchi published monograph on

contact problems in elasticity--treating this class of

problems as variational inequalities.

MARC extended automated contact FEA capability to 

3-D problems.

1990 Martins, Oden, and Simoes published exhaustive

study on static and kinetic

friction (concentrating on

metal contact).

1991 MARC introduced

Ogden rubber model and

rubber damage model.

1994 MARC introduced

Rubber Foam model.

MARC introduced Adaptive 

Meshing Capability.

1997 MARC introduced Narayanswamy

model for Glass Relaxation behavior.

1998 MARC introduced fully parallel

software based on domain decomposition.

2000 MSC.Marc introduced the following:

•  Boyce-Arruda and Gent 

rubber models

•  Special lower-order

triangular and tetrahedral

elements to handle

incompressible materials

•  Automated

remeshing and

rezoning for rubber and

metallic materials.

•  Coupled structural-

acoustic model for harmonic analysis.

•  AXITO3D feature for transfer on axisymmetric

results to perform three-dimensional analysis

for rubber and metals.

•  Continuum composite elements for large

deformation analysis.

Today, with the widespread use of

affordable workstations and high-end

PCs (with sufficient speed, memory,

and disk space), the computational

power required to solve “real-world”

nonlinear FEA problems on a routine

basis has finally arrived.

The benefits of performing nonlinear

FEA of elastomeric products are

essentially the same as those for

linear FEA. FEA should be an

integral part of the design

process, preferably from the CAD

or blueprint stage. The

advantages of this enhanced

design process include: improved

performance and quality of the

finished product; faster time to market;

optimal use of materials; weight

savings; verification of structural

integrity before prototyping; and

overall reduction of development

and production costs. 

Furthermore, a good predictive

capability can help to reduce the

scrap rate in manufacturing stage, that is, “green” stage

to the finally “molded” state, thereby ensuring a

competitive edge.

E X E C U T I V E S U M M A R Y
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This section discusses the issues central to the

description of material modeling of elastomers. A brief

overview of the concepts of nonlinearity and the stress-

strain descriptions suitable for nonlinear analysis is

presented first. The features of time-independent and

dependent material behavior, anisotropy, hysteresis, and

stability are detailed next. In the final note, other

polymeric materials which

share common material

characteristics with

elastomers are reviewed.

The most important concept

to recognize about rubber is

that its deformation is not

directly proportional to the

applied load, in other 

words, it exhibits a

‘nonlinear’ behavior. 

LOAD EXTENSION BEHAVIOR

In linear FEA, a simple linear relation exists between

force and deflection (Hooke’s Law). For a steel spring

under small strain, this means that the force F is 

the product of the stiffness K (N/m) and the 

deflection u(m):

F = K u

Or, the deflection can be obtained by dividing the force

by the spring stiffness. (This relation is valid as long as

the spring remains linear elastic, and the deflections are

such that they do not cause the spring to yield or break.)

Twice the load, twice the deflection.  For this linear

spring problem, a typical force-displacement (or stress-

strain) plot is thus a straight line, where the stiffness K

represents the slope.

Suppose we change the spring material from steel to

rubber. The force-displacement curve deviates

substantially from a straight line which characterizes

rubber as a highly nonlinear material.

STRETCH RATIO

If we perform a uniaxial test by pulling a rubber rod in

the longitudinal direction, the stretch ratio, λ, (or

stretch) is defined as the ratio of the deformed gauge

length L divided by the initial gauge length L0:

λ =  L/L0 = (L0 + u)
/ L0 =  1 + u/L0

Generally, if we apply an

inplane, biaxial load to a

piece of rubber, we can

define three principal

stretch ratios in the three

respective coordinate

directions X, Y, and Z. In

large deformation analysis

of nonlinear materials

(such as elastomers), the

stretch ratios are a

convenient measure of

deformation and are used to define strain invariants

Ij, which are used in many strain energy functions.

STRAIN AND STRESS MEASURES

In large deformation analysis of elastomers, most

nonlinear FEA codes such as Marc use a strain measure

called the Green-Lagrange strain, E [Fung, 1965],

which for uniaxial behavior is defined as:

E = 1/2 (λ2 – 1)

and a corresponding “work conjugate” stress called the 

2nd Piola-Kirchhoff stress, S2:

S2 = F/A (L0/L)2

Although the 2nd Piola-

Kirchhoff stress is useful for the

mathematical material model,

it has little physical significance

and is difficult to use for the

interpretation of results.

Therefore, the engineer resorts

to either the Cauchy (true)

stress, σ:

σ = F/A

with energetically conjugate 

strain measure the logarithmic (true) strain, ε:

ε = ln (L/L0)

or the familiar engineering (Biot) stress, S1:

S1 = F/A0

with energetically conjugate strain measure being

engineering strain, e (or deformation gradient, ƒ in

large deformation theory);

that is, e = ∆L/L0 or ƒ = ∂x/∂X

where x and X refer to the deformed and original

coordinates of the body. Marc provides all of these strain

and stress measures to the analyst. It is important to

note that at small strains, the differences between

various measures of stresses and strains are negligible.

LINEAR FORCE-DISPLACEMENT RELATION

NONLINEAR FORCE-EXTENSION
RELATION FOR RUBBER

STRETCHING OF RUBBER ROD
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This section discusses aspects of nonlinear elasticity:

namely, strain energy density functions and

incompressibility constraint.

STRAIN ENERGY DENSITY

FUNCTIONS

In the FEA of elastomers, material models are

characterized by different forms of their strain energy

(density) functions. Such a material is also called

hyperelastic. Implicit in the use of these functions

(usually denoted by W) is the assumption that the

material is isotropic and elastic. If we take the derivative

of W with respect to strain, we obtain the stress.

The commonly available strain energy functions have

been represented either in terms of the strain invariants

which are functions of the stretch ratios or directly in

terms of the stretch ratios themselves. The three strain

invariants can be expressed as:

I1 =  λ2
1 + λ2

2 + λ2
3

I2 =  λ2
1 λ2

2 + λ2
2 λ2

3 + λ2
3 λ2

1  

I3 = λ2
1 λ2

2 λ2
3

In case of perfectly incompressible material, I3 = 1.

Appealing to the notion of statistical mechanics and

thermodynamics principles, the simplest model of

rubber elasticity is the Neo-Hookean model 

represented as:

W = C10 (I1 –3)
This model exhibits a constant shear modulus, and gives

a good correlation with the experimental data up to 40%

strain in uniaxial tension and up to 90% strains in

simple shear.

The earliest phenomenological theory of nonlinear

elasticity was propounded by Mooney as:

W = C10 (I1 – 3) + C01(I2 – 3)
Although, it shows a good agreement with tensile test

data up to 100% strains, it has been found inadequate

in describing the compression mode of deformation.

Moreover, the Mooney-Rivlin model fails to account for

the stiffening of the material at large strains.

Tschoegl’s investigations [Tschoegl, 1971] underscored

the fact that the retention of higher order terms in the

generalized Mooney-Rivlin polynomial function of

strain energy led to a better agreement with test data for

both unfilled as well as filled rubbers. The models along

these lines incorporated in Marc are:

Three term Mooney-Rivlin:

W = C10 (I1 – 3) + C01(I2 – 3)+
C11(I1 – 3)(I2 – 3)

Signiorini:

W = C10 (I1 – 3) + C01(I2 – 3)+
C20(I1 – 3) 2

Third Order Invariant:

W = C10 (I1 – 3) + C01(I2 – 3)+
C11(I1 – 3)(I2 – 3)+
C20(I1 – 3) 2

Third Order Deformation (or James-Green-Simpson):

W = C10 (I1 – 3) + C01(I2 – 3) +
C11(I1– 3)(I2 – 3)+
C20(I1– 3)2+ C30(I1– 3) 3

All the models listed above account for nonconstant

shear modulus. However, caution needs to be exercised

on inclusion of  higher order terms to fit the data, since

this may result in unstable energy functions yielding

nonphysical results outside the range of the

experimental data. Please see Section 2.5 for issues

regarding material stability.

The Yeoh model differs from the above higher 

order models in that it depends on the first strain

invariant only:

W = C10 (I1 – 3) + C20(I1 – 3) 2

+ C30(I1 – 3) 3

This model is more versatile than the others since it has

been demonstrated to fit various modes of deformation

using the data obtained from a uniaxial tension test

only. This leads to reduced requirements on material

testing. However, caution needs to be exercised when

applying this model for deformations involving low

strains [Yeoh, 1995]. The Arruda-Boyce model

ameliorates this defect and is unique since the standard

tensile test data provides sufficient accuracy for multiple

modes of deformation at all strain levels.

In the Arruda-Boyce and Gent strain energy models, the

underlying molecular structure of elastomer is

represented to simulate the non-Gaussian behavior of

individual chains in the network thus representing the

physics of network deformation.

The Arruda-Boyce model can be described as:

W= nkΘ[1
2
—(I1– 3)+ 1

20N
—(I

2
1 – 9) + 

11—
1050N 2 (I

3
1 – 27) + 

—19
7000N 3(I

4
1 – 81) + 

—519
673750N 4(I

5
1 – 243)]

while the constitutive relation from Gent can be

represented as:

W= —−EIm
6 log [—Im

Im-I *
1
]

where

I *
1

=I 1 −3
Ogden proposed the energy function as separable

functions of principal stretches, which is implemented

in Marc in its generalized form as:

W=
n
Σ

=

N

1
—
µ
α—

n

n   
J
–αn—

3 (λ1

αn+ λ2

αn  +

λ3

αn – 3) + 4.5K(J
–1/3– 1)2

where J is the Jacobian measuring dilatancy, defined as

the determinant of deformation gradient ƒ.  

The Neo-Hookean, Mooney-Rivlin, and Varga material

models can be recovered as special cases from the Ogden

model. The model gives a good correlation with test data

in simple tension up to 700%. The model accommodates

nonconstant shear modulus and slightly compressible

material behavior. Also, for α <2 or >2, the material

softens or stiffens respectively with increasing strain. The

Ogden model has become quite popular recently, and

has been successfully applied to the analysis of O-rings,

seals, and other industrial products.

Other strain energy functions include Klesner-Segel,

Hart-Smith, Gent-Thomas, and Valanis-Landel for

modeling the nonlinear elastic response. For materials

going through large volumetric deformations, several

models have been suggested; for example, Blatz-Ko’s,

Penn’s, and Storaker’s. Marc has adopted the foam

7
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model for compressible materials with the 

following representation:

W =
n
Σ

=

N

1
—
µ
α—

n

n   
(λ1

αn+ λ2

αn + λ3

αn – 3)

+
n
Σ

=

N

1
——
µ
β
—

n

n
(I – J

βn)

where αn, µn, and βn are material constants, and

the second term represents volumetric change. This

model [Hill-1978, Storakers-1986] with n = 2

provides good correspondence with data in uniaxial

and equibiaxial tension. The Blatz-Ko model [Blatz

and Ko, 1968] proposed for polymers and

compressible foam-like materials is a subcase of

above model with n = 2.

INCOMPRESSIBLE BEHAVIOR

Exact (or total) incompressibility literally means the

material exhibits zero volumetric change (isochoric)

under hydrostatic pressure. The third strain invariant 

is identically equal to one. The pressure in the material

is not related to the strain in the material; it is an

indeterminate quantity as far as the stress-strain

relationship is concerned. Poisson’s ratio is exactly 

one-half, while the bulk modulus is infinite. 

Other representations of incompressibility are 

I3 =  λ2
1 λ2

2 λ2
3 = 1  and  det ƒ = 1.

Incompressibility was first considered in FEA by

[Herrmann, 1965]. Analytical difficulties arise when it is

combined with nonlinearities such as large

displacements, large strains, and contact. “Near

incompressibility” means that Poisson’s ratio is not

exactly one-half; for example, 0.49+. Perfect

incompressibility is an idealization to make modeling

more amenable for obtaining closed form solutions. In

the real world, natural as well as filled rubbers are

slightly compressible, thereby, facilitating development

of algorithms with greater numerical stability. Special

formulation for lower-order triangular and tetrahedral

elements satisfying the LBB condition (Appendix B) or

simply the Babuska-Brezzi stability condition effectively

handles analysis of incompressible materials [Liu,

Choudhry, Wertheimer, 1997]. These elements exist 

in Marc and show a very close co-relation of results

when compared to their quadrilateral or 

hexahedral counterparts.

Many other materials are nearly incompressible in the

nonlinear range. In addition to rubber problems, the

engineer may also encounter aspects of

incompressibility in metal plasticity and fluid

mechanics (Stokes flow) problems. Appendix B provides

more details about the FEA of incompressible materials,

and gives an overview of analytical approaches.

2 . 1   T I M E - I N D E P E N D E N T N O N L I N E A R E L A S T I C I T Y
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COMPRESSED TUBE USING QUADRILATERALS AND TRIANGLES

GENERALIZED XY PLOT TO COMPARE QUAD AND TRI RESULTS
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Most people had probably never heard of an “O-ring”—until the failure of an

O-ring was blamed for the Challenger disaster in January, 1986. In the

subsequent televised failure investigation, we witnessed (the late) Professor

Richard Feynman of California Institute of Technology dipping a small O-ring

into a glass of ice water to dramatize its change in properties with temperature.

This case study demonstrates only one of the complexities involved in analyzing

2-D rubber contact, where an axisymmetric model of an O-ring seal is first

compressed by three rigid surfaces, then loaded uniformly with a distributed

pressure. The O-ring has an inner radius of 10 cm and an outer radius of 13.5

cm, and is bounded by three contact surfaces. During the first 20 increments,

the top surface moves down in the radial direction a total distance of 0.2 cm,

compressing the O-ring. During the subsequent 50 increments, a total pressure

load of 2 MPa is applied in the Z-direction, compressing the O-ring against the

opposite contact surface. The final deformed shape is shown for increment 70.

Also shown are the increment 70 final contact

forces distribution, and the increment 20

radial Cauchy stress distribution. The

Ogden material parameters are

assigned values of µ1=0.63 MPa,

µ2=0.0012 MPa, µ3=0.01 MPa,

a1=1.3, a2=5.0, and a3=2.0. 

(These parameters are explained

in Section 2.)

At the end of increment 70, the

originally circular cross-section of the

O-ring has filled a rectangular region

on the right while remaining circular on

the left (where the pressure loading is applied). 

This type of elastomeric analysis may encounter

instability problems because of the large

compressive stresses; the solution algorithm in the FEA code must be able to

pinpoint such difficulties during the analysis and follow alternative paths.

Otherwise, the FEA code may give incorrect results!

The O-ring is also analyzed using a 2-term Mooney-Rivlin model. It is found

that the CPU and memory usage are about the same per iteration as for the 3-

term Ogden model.

Notes: For this type of rubber contact analysis, the nonlinear FEA code must be

able to handle “deformable-to-rigid” contact, the incompressibility of the

material, friction, mesh distortions (especially at the two corners), and

potential instability problems as the analysis progresses. The important point to

note about this example is that the applied pressure is many times larger than

the material constants. Although the analysis is 2-D, the solution of this rubber

problem is not trivial.

O - R I N G U N D E R C O M P R E S S I O N

CAUCHY STRESSES IN RADIAL DIRECTION

(INCREMENT 20)

O-RING AXISYMMETRIC MODEL

FINAL DEFORMED GEOMETRY

(INCREMENT 70)

CONTACT FORCES DISTRIBUTION

(INCREMENT 70)
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This section introduces the concept of viscoelasticity and

mentions some important mechanisms through which

temperature and fillers influence rubber behavior.

Rubber exhibits a rate-dependent behavior and can be

modeled as a viscoelastic material, with its properties

depending on both temperature and time. When

unloaded, it eventually returns to the original,

undeformed state. When subjected to a constant stress, it

creeps. When given a prescribed strain, the stress

decreases with time; this phenomenon is called stress

relaxation, or relaxation. Hysteresis refers to the

different stress-strain relationship during unloading (as

compared to the loading process) in such materials

when the material is subjected to cyclic loading

(see Section 2.4). Collectively, these features of

hysteresis, creep, and relaxation—all

dependent upon temperature—are often called

features of “viscoelasticity” [See the texts by

Fung-1965, Christensen-1982, and Ferry-1970].

LINEAR VISCOELASTICITY

Linear viscoelasticity refers to a theory which

follows the linear superposition principle, where

the relaxation rate is proportional to the

instantaneous stress. Experimental data shows

that “classical” linear viscoelasticity (applicable

to a few percent strain) represents the behavior

of many materials at small strains. In this case,

the instantaneous stress is also proportional to

the strain. Details of the material test data

fitting, to determine input data required for

viscoelastic analysis (such as calculating the

necessary Prony series coefficients for a

relaxation curve) are discussed in Section 3.

Mechanical models are often used to discuss

the viscoelastic behavior of materials. The first

is the Maxwell model, which consists of a

spring and a viscous dashpot (damper) in

series. The sudden application of a load induces

an immediate deflection of the elastic spring,

which is followed by “creep” of the dashpot. On

the other hand, a sudden deformation produces

an immediate reaction by the spring, which is

followed by stress relaxation according to an

exponential law. The second is the Kelvin (also

called Voigt or Kelvin-Voigt) model, which

consists of a spring and dashpot in parallel. A sudden

application of force produces no immediate deflection,

because the dashpot (arranged in parallel with the

spring) will not move instantaneously. Instead, a

deformation builds up gradually, while the spring

assumes an increasing share of the load. The dashpot

displacement relaxes exponentially. A third model is the

standard linear solid, which is a combination of two

springs and a dashpot as shown. Its behavior is a

combination of the Maxwell and Kelvin models. Creep

functions and relaxation functions for these three

models are also shown [Fung, 1981]. The Marc program

features a more comprehensive mechanical model

called the Generalized Maxwell model, which is an

exponential or Prony series representation of the

stress relaxation function. This model contains, as

special cases, the Maxwell, Kelvin, and standard linear

solid models.

NONLINEAR VISCOELASTICITY

Nonlinear viscoelastic behavior may result when the

strain is large. A finite strain viscoelastic model may be

derived by generalizing linear viscoelasticity in the sense

that the 2nd Piola-Kirchhoff stress is substituted for

engineering stress, and Green-Lagrange strain is used

2 . 2   V I S C O E L A S T I C I T Y

MAXWELL MODEL KELVIN (VOIGT) MODEL STANDARD LINEAR SOLID

CREEP FUNCTIONS

RELAXATION FUNCTIONS
FROM FUNG [1981], BY PERMISSION.



instead of engineering strain. The viscoelasticity can be

isotropic or anisotropic. In practice, modified forms of

the Mooney-Rivlin, Ogden, and other polynomial strain

energy functions are implemented in nonlinear FEA

codes. The finite strain viscoelastic model with damage

[Simo, 1987] has been implemented in Marc.

TEMPERATURE EFFECTS

Temperature effects are extremely important in the

analysis of elastomers, and affect all aspects of rubber

behavior, including viscoelasticity, hysteresis, and

damage. Temperature has three effects: (1) temperature

change causes thermal strains, which must be combined

with mechanical strains, (2) material moduli have

different values at different temperatures, (3) heat flow

may occur. A modern nonlinear FEA code such as Marc

accounts for heat flow and offers the capability to

conduct coupled thermo-mechanical analysis. In

other words, the analyst uses the same finite element

model for both the thermal and stress analyses, and both

thermal and force equilibrium are satisfied in each

increment before the nonlinear analysis proceeds to the

next increment.

Material constants associated with the strain rate

independent mechanical response, such as Mooney-

Rivlin, Ogden, and rubber foam constants, vary with

temperature, as do the coefficient of thermal expansion,

Poisson’s ratio, thermal conductivity, etc. The time-

dependent phenomena of creep and relaxation also

depend on temperature. The viscoelastic analysis is thus

temperature-dependent. In contact problems, friction

produces heat, which would be included in the analysis.

Another important consideration is the heat generation

of rubber components in dynamic applications, since

after each deformation cycle some fraction of the elastic

energy is dissipated as heat due to viscoelasticity.

(Dynamic applications are discussed in Section 5.)

A large class of materials exhibit a particular type of

viscoelastic behavior which is classified as thermo-

rheologically simple (TRS). TRS materials are plastics

or glass which exhibit a logarithmic translational

property change with a shift in temperature (as shown

in the figure). This shift in time t as a function of

temperature T is described by the so-called “shift

function.” An example

of such a shift function

is the Williams-Landel-

Ferry shift. The

WLF-shift function

depends on the glass

transition temperature

of the polymer

[Williams et. al., 1955].

(The Marc code allows

TRS-materials for both

linear and large strain

viscoelasticity.) Another

well-known shift

function is the BKZ-

shift [Bernstein, Kearsley, and Zapa, 1963]. Note that

with TRS materials, the relaxation function is

independent of the temperature at very small times--

which implies that the instantaneous properties are not

temperature dependent.

For glass-like materials, a multi-parameter viscoelastic

model incorporating the memory-effect and nonlinear

structured relaxation behavior [Narayanaswamy, 1970]

has been implemented in Marc. The model also predicts

the evolution of physical properties of glass subjected to

complex, arbitrary time-temperature histories. This

includes the nonlinear volumetric swelling that is

observed during typical glass forming operations.

2 . 2   V I S C O E L A S T I C I T Y
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2 . 3   C O M P O S I T E S

Rubber composites can be classified as particulate,

laminated, or fibrous depending on their construction. It

is well known that such composites usually exhibit

highly anisotropic response due to directionality in

material properties.

The most commonly

available particulate

composites are filled

elastomers where the

carbon black

particles are

dispersed in a

network of polymeric

chains. Fillers are

added to rubber

products such as car

tires and shock

mounts to enhance

their stiffness and

toughness properties.

Common fillers

include carbon black and silica, where the carbon

particles range in size from a few hundred to thousands

of angstroms. They influence the dynamic and damping

behavior of rubber in a very complex and

nonproportional manner. The unique behavior of

carbon black-filled elastomers results due to a rigid,

particulate phase and the interaction of the elastomer

chains with this phase [Bauer and Crossland, 1990].

Unlike unfilled rubbers, the relaxation rate (in filled

rubbers) is not proportional to the stress, and one may

need a general nonlinear finite-strain time-dependent

theory. Current research on the characterization of filled

rubber shows promising results [Yeoh, 1990]. Yeoh

derived a third-order strain energy density function

which does not depend on the second strain invariant;

features a shear modulus that can change with

deformation; and can represent both tension and

compression behavior equally well. Unfortunately,

among the existing strain energy functions, both the

polynomial as well as Ogden models are unable to

capture the sharp decrease in shear modulus for filled

rubbers at small strains.

On the computational side, a numerically efficient

phenomenological model has recently been developed to

analyze carbon black-filled rubber which accounts for

the Mullins’ effect [Govindjee and Simo, 1992]. This

damage model has been extended to include the Ogden

strain energy function; results agree well with

experimental data for cyclic tension tests with quasi-

static loading 

rates. Marc offers 

a damage 

model capability 

in conjunction 

with the large 

strain viscoelastic

model for all 

strain energy

functions. This

makes it an

extremely useful 

tool to simulate 

the energy

dissipation or

hysteresis in 

filled rubbers.

Laminated elastomer/polymer composites occur in

rubber/steel plate bearings used for seismic base

isolation of buildings and bridges where horizontal

flexibility coupled with vertical rigidity is desired.

Another area of application is composite sheet 

metal forming where a layer of rubber/polymer 

may be sandwiched between two metal sheets 

for desired stiffness and damping characteristics.

Computationally, this problem is handled by Marc

using a nonlinear elasticity model within a total or

updated Lagrangian framework for the rubber while

resorting to large deformation plasticity within an

updated Lagrangian framework for the metallic

sheets. Laminated structures can be modeled using the

lower- or higher-order continuum composite elements

in Marc. The standard failure

criterion for composite materials 

can be used in analysis with 

brittle materials.

An important class of composites

arises due to the presence of textile or

steel cords in the rubber matrix

[Clark, 1981]. Applications of such

composites can be found in tires, air

springs, shock isolators, and hoses.

Such composites pose a challenge, both from a

manufacturing perspective, where adhesion of the

fibers to the rubber matrix can occur, as well as from a

numerical point of view, in which numerical ill-

conditioning can occur due to the stiffness differential

between rubber and cords. Such cord-reinforced

rubber composites can be modeled using the

membrane or continuum rebar elements [Liu,

Choudhry, and Wertheimer, 1997].

Typical cord-rubber composites have a fiber to matrix

modulus ratio of 104 – 106 : 1. This gives rise to an

internal constraint of near-inextensibility of cords

which is analogous to the near-incompressibility of

rubber. Such composites have a volume fraction of

cords less than a typical stiff fiber composite (used in

aerospace applications). This is primarily to provide

added flexibility to the system and to prevent frictional

sliding between the cords in large deformation

situations. Adding further complications is the fact

that the cords themselves are composed of twisted

filaments. This gives rise to a bimodular system

dependent on the tension or compression due to

microbuckling of the fibers. Material modeling of such

composites has traditionally been carried out by

smearing or averaging out material properties over the

domain of the composite structure. [Walter-Patel,

1979] have shown good correlation of the

experimental data with Halpin-Tsai, Gough-Tangorra,

and Akasaka-Hirano equations to derive equivalent

mechanical properties for cord-rubber composites.

Marc offers several options to model the large strain

behavior of cord-rubber composites. The most popular

ones include modeling the composite plies as

anisotropic membranes sandwiched between

continuum or brick elements representing the rubber.

YEOH MODEL:  TENSILE AND COMPRESSIVE DATA
REPLOTTED AGAINST (I1–3). From Yeoh [1990].

LAMINATED RUBBER/STEEL SHOCK ISOLATION
BEARING IN SHEAR. From Billings and
Shepherd [1992].
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If the composite structure is thin, anisotropic layered

shell elements provide a viable option. Likewise, the

rebar element, designed originally for concrete

reinforced with steel rods and then extended for cord-

rubber composites has recently gained popularity due

to its computational economy. 

On a final note, although the phenomenological

theories of elastomers are quite satisfactory in the

gross design of structures, they cannot be expected to

accurately model microscopic effects such as

debonding, cracks, and free-edge effects.

TABLE I

MODULUS RATIO COMPARISONS FOR RIGID AND FLEXIBLE COMPOSITES

Filamentary Reinforcement Matrix Longitudinal Transverse Modulus Anisotropy

composite system modulus, Ec modulus, Er ply modulus, E1 ply modulus, E2 ratio, Ec/Er E1/E2
(GPa) (GPa) (GPa) (GPa)

Glass-epoxy 75.0 3.4000 50.0 18.000 22.0 2.8

Graphite-epoxy 250.0 3.4000 200.0 5.200 74.0 38.0

Nylon-rubber 3.5 0.0055 1.1 0.014 640.0 79.0

Rayon-rubber 5.1 0.0055 1.7 0.014 930.0 120.0

Steel-rubber 83.0 0.0140 18.0 0.021 5,900.0 860.0

E1 and E2 are calculated at volume fractions typical of use for the different composites.
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BC A S E S T U D Y C A R T I R E

TIRE SECTION SHOWING
DIFFERENT MATERIALS

CONTACT OF TIRE SECTION

TIRE MODEL

TIRE CONTACT

Analyzing the interaction of an automobile tire with the road is one of the

most challenging problems in computational mechanics today. It is a very

complex 3-D contact analysis, involving a complicated shape (tire cross

section), composite materials (comprised of polyester or steel cords, steel

wire beads, and rubber–leading to anisotropic behavior), uncertain loading

conditions (mounting loads, inflation pressure, car weight, side impact,

hitting a curb, temperature effects for a car cruising for a while at high

speeds, etc.), and large deformations. Friction, dynamic, and fatigue effects

are also important. All leading tire manufacturers use nonlinear FEA to help

design safer and better tires...but none has, as of yet, abandoned

full-scale testing. 

A half-tire model is shown. The tire is modeled with

rubber continuum elements. The layered cord

material is modeled using anisotropic membrane

elements. The rim is modeled using stiff 

beam elements. 

The road is assumed to be elastic; consequently,

the contact conditions are viewed as “deformable-

to-deformable.” The complete load history

consists of: mounting the tire on the rim; internal

pressurization up to 1.5 bar; applying the axial car

load; and removal of the internal pressure. The

deformed tire shape is shown at an internal pressure

of 1.5 bar with the full car load. A good tire model is,

by definition, very complex and typically consists of

thousands of 3-D elements, and usually consumes several

hours of computer time.

Notes: In addition to the complexities of tire analysis

mentioned above, car and tire manufacturers also

need to worry about: occasional “buckling” of the bead

region; tire wear for different tread designs; noise transmitted to the

passenger cabin; ride comfort; tire puncture by a nail or glass; and traction

effects due to rain, snow, and ice. Passenger safety, manufacturability at

reasonable cost, and tire life are the most important design objectives.



Under cyclic loading, rubber dissipates energy—due to

hysteresis effects. The steady-state response is quite

different from the initial response. Filled rubber

undergoes so-called stress-induced softening

(sometimes referred to as damage), a

phenomenon caused by a breakdown

of crosslinks and a progressive

detachment of rubber molecules from

the surfaces of reinforcing fillers.

Although rubber will stiffen under load

in certain situations, here we will only

discuss the more common case of

rubber softening. A typical one-cycle

force-extension plot for rubber in

biaxial tension is shown on the right.

The five primary, underlying

mechanisms responsible for hysteresis

of rubber are:

1.  INTERNAL FRICTION

The internal friction is primarily a result of

rearrangement of the molecular structure under applied

load and subsequent sliding of chains, past each other.

The phenomenon of internal friction or internal viscosity

is highly temperature dependent and its temperature

dependence may be described by the concept of flow

viscosity. The flow viscosity, ηv, decreases as temperature

increases and at temperature T> Tg, it is related to its

value at the glass transition temperature, Tg, typically by

the Williams-Landel-Ferry equation:

ηv (T)        – C1 (T – Tg)
log ———— = ———————

ηv (Tg)        C2 + T – Tg

An increase in temperature results in increased

segmental mobility, thereby leading to decreased

viscosity and reduced hysteresis. Presence of particulate

filler, for example, carbon black, leads to decreased

segmental mobility and hence increased viscosity and

increased hysteresis.

2.  STRAIN-INDUCED

CRYSTALLIZATION

Large extension and retraction of elastomeric material

gives rise to formation and melting of crystallized

regions. Such a strain-induced crystallization produces

hysteresis effects. During the retraction phase, the stress

relaxation rate usually exceeds the rate at which the

molecular chains disorient leading to an extended

period of crystallization. In this regard, an unfilled

natural rubber exhibits more hysteresis than its unfilled

synthetic counterpart as shown in the figure.

3.  STRESS SOFTENING

Modification and reformation of rubber network

structures in the initial loading stages can show a lower

stiffness and changes in damping characteristics. This

strain-induced stress softening in carbon black-filled

rubbers is called the Mullins’ effect [Mullins-1969;

Simo-1987; Govindjee and Simo, 1992], although such

a phenomenon has been observed in unfilled rubbers

also. It manifests itself as

history-dependent stiffness.

The uniaxial stress-strain

curve remains insensitive at

strains above the previous

achieved maximum, but

experiences a substantial

softening below this

maximum strain. The

larger the previously

attained maximum, the

larger the subsequent loss

of stiffness. In a cyclic test,

the material is loaded in tension to a strain state labeled

“1” along path “a”. If the material is again loaded, the

stress-strain curve now follows path “b” to point “1” and

not path “a”.  If additional loading is applied, path “a”

is followed to a point labeled “2”. Upon

unloading, path “c” is followed, thereby

resulting in an even greater loss of stiffness

in the material. Features contributing to

the stress-softening behavior include the

modification and reformation of rubber

network structures involve chemical

effects, microstructural damage, multi-

chain damage, and microvoid formation.

These mechanisms are considerably

enhanced by strain amplification caused

by rigid particles in filled rubbers.

4.  STRUCTURAL

BREAKDOWN

In a filled rubber with carbon black-filler

particles, the carbon black particles tend to form a loose

reticulated structure because of their surface activity or

mutual interactions. They are also interlaced by the

network of rubber chain molecules which are

crosslinked during vulcanization. The breakdown of

these aggregates, and of the matrix/filler interfacial

bonds due to loading, gives rise to hysteresis.

5.  DOMAIN DEFORMATION

Viscoelastic stress analysis of two-phase systems [Radok

and Tai, 1962] has shown that dispersed inclusions or

domains in a viscoelastic medium contribute to an

increase in the energy

loss even when the

domains are

themselves perfectly

elastic in nature. In

some instances,

however, the domains

are themselves capable

of exhibiting an

energy dissipating

mechanism. Also,

certain elastomers

contain domains of

2 . 4   H Y S T E R E S I S
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CYCLIC TENSION TEST DEMONSTRATING
MULLINS’ EFFECT. From Govindjee and
Simo [1992].

FRACTURE BEHAVIOR OF POLYMERS
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dispersed hard inelastic inclusions.

Such rubbers exhibit an inelastic

deformation leading to permanent set

due to shear yielding and typically

show very high levels of hysteresis.

Finally an example of hysteresis due

to large-strain viscoelasticity is

demonstrated here for three rubber

samples with identical static behavior

but different time-dependent behavior

[Konter et al., 1991]. A series of

identical load histories with constant

time steps are applied: first, loading in

10 steps of 0.1 sec.; next, unloading of

10 steps of 0.1 sec.; then, loading another 10 steps of 0.1

sec., etc. Calculations show very different behavior for

the three samples. Case X exhibits a “short term

response” behavior—with a high stiffness. Case Y

shows a “transition” type of behavior, with an initial

increase in displacement followed by a cycle around a

“permanent set.” (This permanent set is caused by

rubber network modification and reformation, which is

primarily developed during the initial loading.) Case Z

exhibits a typical “long term response” behavior—with

a lower stiffness.

2 . 4   H Y S T E R E S I S

HYSTERESIS EFFECTS IN RUBBER



Instabilities that arise in the FEA of elastomers can be

either “physical” or “numerical.” Physical instabilities

include buckling of a structure. Possible onset of

buckling may be characterized by a limit point when the

rubber structure can

snap-through from

one equilibrium

configuration to

another, or a

bifurcation point

which is

characterized as an

intersection of two

equilibrium paths.

Other types of

instabilities would

include necking of a

sheet, or sudden folds

or wrinkles which occur due to high compressive stresses

near a surface. The FEA code must be able to analyze

rubber-to-rubber contact beyond the initial stage of

folding. These instabilities which result in a sudden

change in stiffness pose a severe test of a code’s 

solution algorithm.

[Padovan et al., 1991] have studied the occurrence of

physical instabilities associated with surface wrinkles

and local bifurcations in seals and gaskets. Typical

mesh densification results are shown for those elements

bordering the folds. In studying surface instabilities of

oil well valve rubber packings, Padovan has found that

strains will reach 400 to 450 percent and that low cycle

fatigue becomes important. With valve closure, a

hierarchy of folds appears: single folds, folds of folds,

and multiple foldings. In those cases where folds occur

near a rigid or very stiff boundary, refining

the model would not help to achieve a

converged solution!

Cord-rubber composites present yet another

example of instability that may arise due to

treatment of internal constraints, i.e., near

inextensibility of the fibers. In fact, buckling

and warping of surfaces of a reinforced

material may result from the loading, which

if applied to unconstrained material, would

cause no instability at all [Beatty, 1990].

Inflatable cord-reinforced rubber products

present an example of structure whose stability limits are

governed by air pressure and construction parameters in

addition to the material properties.

Numerical instabilities

include:  instabilities in the

mathematical description of the

material law, and instabilities in

the numerical enforcement of

the incompressibility constraint.

The material model must satisfy

certain restrictions on its elastic

moduli [Rivlin, 1980] to

produce physically acceptable

modes of deformation. In short,

the material must satisfy the

Drucker Stability criterion that

the change of energy in a closed

cycle is non-negative. For isotropic, incompressible

materials, the Drucker Stability criterion is expressed as:

∑∑ dσi j dε i j ≥ 0
i    j

For elastic materials without energy dissipation, the

above criterion reduces to an equality. Marc material

parameter evaluation solves a constrained optimization

problem to assure the stability

of energy functions. [Tabaddor,

1987] has shown the existence

of multiple solutions with more

than one stable solution in

pure, homogeneous modes of

deformation using

perturbation method. 

These instabilities do not usually occur in the actual

structure and are often the result of the mathematical

abstraction of the real material. The numerical

algorithms in Marc enable the user to avoid these

instabilities. Sophisticated arc-length iteration methods

exist in order to determine the deformed configuration

and load carrying capacity of the buckled structure.

2 . 5   S T A B I L I T Y
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SURFACE INSTABILITY

MESH DENSIFICATION DURING FOLDING.
From Padovan et. al. [1991]

WRINKLING OF SEAL
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Many of the concepts used to analyze

rubber behavior are also applicable to

glass, plastics, foams, solid

propellants, and biomaterials [Harper,

1982]. These include: large

deformations, variable contact, strain

energy density functions, near

incompressibility, and viscoelastic

effects. Here, we’ll briefly note some

important considerations in the

modeling and design/analysis of 

these materials.

BIOMATERIALS include human

tissues and polymeric materials used

in modern medical/dental implants

and devices (for example, cardiac

pacemaker seals, filled dental

composite resins). Plastics and other

synthetic polymeric materials are

viscoelastic. Human tissues may also

be treated as viscoelastic materials;

these include blood vessels, heart muscles, articular

cartilage, mucus, saliva, etc. [Fung, 1981]. They creep

and relax. Many of the concepts introduced in this White

Paper are also applicable to biomechanics studies. These

include, for instance: curve-fitting of test data to

determine material parameters for FEA, viscoelastic

modeling, response of a viscoelastic body to harmonic

excitation, large deformations, hysteresis and softening,

and so forth. The figure shows typical room-temperature

stress-strain curves in loading and unloading for four

species. Notice that, in all four cases, softening occurs

and the unloading behavior is different from the loading

behavior (as in the case of rubber).

FOAMS are often made of polyurethane, are soft and

spongy—almost any solid can be foamed. Techniques

now exist for making three-dimensional cellular solids

out of polymers, metals, ceramics, and even glasses.

Man-made foams, manufactured on a large scale, are

used for absorbing the energy of impacts (in packaging

and crash protection) and in lightweight structures (in

the cores of sandwich panels, for instance). Unlike

rubber, foam products are highly compressible, and are

porous with a large portion of the volume being air.

Elastomeric foams are fully elastic (resilient), metal

foams may have plastic yield, and ceramic foams are

brittle and crushable. Resilient foams are used for car

seats, mattresses, shipping insulation materials, and

other applications which undergo repeated loading

where light weight and high compliance is desirable.

Some foams (for example, rigid polymer foams) show

plastic yielding in compression but are brittle in tension.

Crushable foams are used widely in shock-isolation

structures and components. These are sometimes

analyzed by “foam plasticity” models. In compression,

volumetric deformations are related to cell wall

buckling processes. It is assumed that the

resulting deformation is not recoverable

instantaneously and the process can be

idealized as elastic-plastic. In tension, these cell

walls break easily, and the resulting tensile

strength of the foam is much smaller than the

compressive strength. Strain rate sensitivity is

also significant for such foams.

GLASS is brittle, isotropic, and viscoelastic.

Crack initiation and propagation are important

concerns (even though most glass products are

not ordinarily used as load-carrying members). Like

concrete and plastics, glass creeps with time.

The proper FEA of glass products must pay attention to

several important characteristics of glass when

considering various forming processes and

environmental conditions. 

(1) Glass exhibits an abrupt transition from its

fluid to its glassy state—known as the glass

transition temperature. 

(2) Transient residual stresses are developed during

manufacturing, thus requiring a time-

dependent analysis. 

(3) For safety reasons, many common glass

products (such as car windshields and shower

doors) are tempered: in which the glass is

intentionally heated, then cooled, in a

controlled manner to develop a thin surface

layer under compressive stress, in order to 

resist crack propagation and tension-

induced cracking. 

(4) For optical applications such as lenses and

mirrors, the curvature of the surface and its

birefringence are of crucial importance. Here,

the critical design    parameter is deflection,

not stress. 

(5) In hostile environments, such as those faced by

solar heliostats in deserts, the adhesive bond

cementing the mirror to its substrate is highly

susceptible to deterioration by ultraviolet

radiation, intense heat, moisture, etc.—usually
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BLATZ-KO MODEL FOR FOAMS

TYPICAL STRESS/STRAIN CURVES IN LOADING AND
UNLOADING FOR FOUR SPECIES. From Fung [1981],
by permission.



leading to a change of the mirror’s intended

curvature or flatness after continued exposure. 

(6) Many glass products in their service life

experience a combination of thermal and

mechanical loads, thus requiring a coupled

thermo-mechanical analysis as part of the

design procedure.

PLASTICS behave similarly to rubber in some aspects,

but differently in others. For instance, plastics and

rubber exhibit no linear region in their stress-strain

behavior except at very small strains. Load duration and

temperature greatly influence the behavior of both. Like

elastomers, plastics are viscoelastic materials. Both are

dependent on strain rate. However, while the elastomers

typically undergo large deformations even at room

temperature, plastics usually do not.

Additional complications arise in the characterization of

plastics. Two generic types of plastics exist: thermosets

and thermoplastics. Thermosets (such as phenolics) are

formed by chemical reaction at high temperatures.

When reheated, they resist degradation up to very high

temperatures, with

minimal changes in

properties. However, at

extremely elevated

temperatures, this type of

plastic will char and

decompose. At this point,

the thermal and

mechanical properties

degrade dramatically.

Thermoplastics, when

heated, will soften and then

melt. The metamorphosis

is more continuous. The

relative variation in

properties is more significant for thermoplastics than

thermosets for temperatures below the point at which

the latter decomposes. Thermoplastics generally exhibit

a broad “glass transition” range over which the material

behaves in a viscoelastic manner. This behavior is

contrasted with thermosets that exhibit an abrupt

transition. Some plastics (such as certain polyethylenes)

deform inelastically and may be analyzed with standard

metal plasticity models (for example, Drucker-Prager

model). One important distinction, from a modeling

standpoint, is that plastics, unlike most metals, behave

differently in tension and compression. In this respect,

plastics are similar to rubber and composite materials.

The proper FEA of plastic products requires the analyst to

be aware of certain important characteristics of plastics. 

(1) The plastic forming process (for example,

injection molding) results in a deformed shape

with residual stresses. Coupled thermal-

mechanical analysis is necessary, and

automated contact analysis becomes very

important. Properties are dependent upon

temperature and time. 

(2) “Non-equilibrium” rapid heating and cooling

effects are also important. In this respect,

plastics are similar to glass and solid

propellants. For most plastics, the bulk

modulus and coefficient of thermal expansion

are known to be sensitive to pressure. 

(3) Before actual cracking, a phenomenon called

crazing often occurs. This is associated with

localized regions where

polymer chains have

become excessively

stretched due to high local

stress concentrations.

Rupture is most often

initiated there. Crazing is

associated with a region of

altered density which is

detrimental to the desired

optical or aesthetic

qualities of plastic

products such as

transparent utensils 

and containers. 

(4) Birefringence is important, as for glass. 

(5) Plastics are also susceptible to damage due to

hostile environments, such as ultraviolet

radiation and steam. Plastic products used in

sterilization and autoclave applications often

fail due to steam effects. They exhibit

significant reduction in ductility with

continued exposure to steam. 

(6) In some cases, linear FEA may be satisfactory

when designing plastic materials under low

level loading and low strains. However, for

those problems involving large deformations,

buckling/postbuckling, contact/impact, high

loading, or where residual stresses are to be

determined, nonlinear FEA is a must.

2 . 6  •  O T H E R P O L Y M E R I C M A T E R I A L S
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SNAP FIT OF PLASTIC PART
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CC A S E S T U D Y

RUBBER BOOT HALF-MODEL

AXIAL COMPRESSION
(INCREMENT 13)

BENDING 

Rubber boots are used in many industries to protect flexible connections

between two bodies. The boot itself should have enough stiffness to retain its

shape; on the other hand, it must not have too much stiffness so as to

interfere with the flexible connection. In the automotive industry, “constant-

velocity” joints on drive shafts are usually sealed with rubber boots in order

to keep dirt and moisture out. These rubber boots are designed to

accommodate the maximum possible swing angles at the joint, and to

compensate for changes in the shaft length. Proper design dictates that

during bending and axial movements, the individual bellows of the boot must

not come into contact with each other, because the resultant wear would

produce failure of the rubber. Such undesirable contact would mean

abrasion during rotation of the shaft, leading to premature failure of the

joint. Local buckling can also occur in one of the bellows.

The FEA of rubber boots presents many interesting features: 

(1) large displacements; (2) large strains; (3) incompressible

material behavior; (4) susceptibility to local buckling;

and (5) varying boundary conditions caused by the

3-D contact between various parts of the boot.

Proper design should also consider bellows

shape optimization, fatigue life,

maintainability and replaceability, 

and cost.

This example shows the analysis of

the axial compression and bending

of a rubber boot. Due to symmetry,

it is only necessary to model half of

the boot. The boot is clamped on

one side to a rigid surface, and on

the other side to a translating and

rotating axis. Axial compression is

first applied, followed by bending. The

deformed shapes are shown for the axial

compression and bending loads.

Notes: One leading U.S. rubber boot manufacturer has applied such 3-D

contact analysis techniques to evaluate and optimize new boot designs (one

design had a longitudinal seam to facilitate installation). Improved fatigue life

was the design goal, and nonlinear FEA was successfully used to minimize

time and cost—and come up with a boot design which achieved an

acceptable product life cycle. The analysis was correlated with test results,

and showed that a modified design with a seam attained a similar fatigue life

as the original design (without a seam). The new design with a seam

substantially reduced the installation costs. Note that “do-it-yourself” kits

using this split boot design are now available to replace worn-out boots.

C O N S TA N T- V E L O C I T Y R U B B E R B O O T

C O M P R E S S I O N A N D B E N D I N G
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Successful modeling and design of rubber

components hinges on the selection of an

appropriate strain energy function, and accurate

determination of material constants in the

function. Appendix C describes the

tests required to characterize the

mechanical response of the

polymeric material. Marc offers the

capability to evaluate the material

constants for nonlinear elastic and

viscoelastic materials in its

graphical user interface, 

MSC.Marc Mentat.

RUBBER ELASTICITY 

For time-independent nonlinear

elasticity, the fitting procedure may

be carried out for polynomial

representations of incompressible

materials, the generalized Ogden

model for slightly compressible

materials, and the Foam model for compressible

materials. Six different types of experiments are

supported, namely, uniaxial tension, uniaxial

compression, equibiaxial, planar (or pure) shear,

simple shear, and volumetric tests. The significance

of (non-equivalent) multiple tests for material

modeling cannot be overemphasized. In general, a

combination of uniaxial tension/compression and

simple shear is required at the very least. Data from

equibiaxial tension or planar shear may also be

needed depending on the deformation modes of the

structure. Volumetric data must be included for

materials undergoing large compressible

deformations, for example, foams. Also, the curve

fitting in MSC.Marc Mentat allows a combined

input of more than one test to obtain the

appropriate material constants.

Typical elastomeric behavior of many materials

have stress-strain curves as shown above. Each of

the three strain states (biaxial, pure shear or planar

tension, and tension) have decreasing stresses for

the same strain level.

The importance of performing multiple mode tests

is to insure that model predicts the correct behavior

of other modes. The curve-fitting in MSC.Marc

Mentat shows how other modes would behave. The

example below shows how a great tension fit for a

3-term Ogden material greatly overpredicts the

biaxial response. 

From a mathematical point of view, determining the

material constants for an incompressible material is

relatively easy, since they follow from the least squares

method in a straight forward fashion. However, the

material constants may turn out to be negative and

therefore physically not meaningful. The phenomenon

is a numerical serendipity and not a fundamental

material behavior. In this case, a constrained

optimization process can be invoked, based on

sequential linear programming [Press, Tenkolsky,

Vetterling, and Flannery, 1992] in order to obtain non-

negative constants.

Automated facilities are

available to help the

user determine these

material parameters

from test data. The

curve-fitting program is

interactive and consists

of four steps: (1) data

entry—where the user

inputs experimental

data; (2) evaluation—

where the program

mathematically fits the

data; (3) plotting/display—where the user sees

graphical verification of the results and is able to

observe the behavior beyond the test range; and (4)

write—where the program automatically creates a

data set and the necessary

coefficients for the strain energy

density function of choice.

Typical curve-fitting results 

are shown.

For the generalized Ogden as well

as the Foam model (principle

stretch-based models), the

material constants follow from a

set of nonlinear equations and

the data is fitted based on the

Downhill-Simpson algorithm.

S E C T I O N A U T O M AT I C D E T E R M I N AT I O N O F

M AT E R I A L P A R A M E T E R S F R O M T E S T D ATA
3
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EXAMPLE 1: 
DETERMINING MOONEY-
RIVLIN CONSTANTS

The figure on the right shows typical

Mooney plots for various vulcanized

rubbers in simple extension. The fitted

lines are straight, with constant slope

C01, and intercepts C10, which

typically vary according to the degree

of vulcanization or crosslinking.

EXAMPLE 2: DETERMINING

OGDEN CONSTANTS

The figure above shows how a 3-term

Ogden model compares with Treloar’s

data [Treloar, 1975] in simple tension,

pure shear, and biaxial tension.  The

Ogden constants in this case were

determined to be [for details, see Ogden, 1972]:

µ1 = 0.63 MPa,  

µ2 = 0.0012 MPa,

µ3 = – 0.01 MPa

α1 = 1.3,  

α2 = 5.0,  

α3 = –2.0

For this example, it is clear that

the 3-term Ogden model gives

the best fit. Practically, more

than a 3-term Ogden model is

rarely used. 

EXAMPLE 3: DETERMINING RUBBER

FOAM CONSTANTS

The figure below shows how a 3-term rubber foam

model fits a rubber foam in uniaxial compression. The

coefficients were determined to be:

µ1 = 1.11765 MPa, 

µ2 = – 1.11983 MPa,

µ3 = 0.125023e – 4 MPa,

α1 = 7.83173,   

α2 = – 0.715832, 

α3 = 7.00243,

β1 = – 5.41755,

β2 = – 5.41648,   

β3 = – 6.85885

A U T O M A T I C D E T E R M I N A T I O N O F M A T E R I A L P A R A M E T E R S F R O M T E S T D A T A

EXAMPLE 1:  DETERMINATION OF MOONEY-
RIVLIN CONSTANTS FOR VULCANIZED RUBBER
IN SIMPLE TENSION

EXAMPLE 2:  CORRELATION OF 3-TERM
OGDEN MODEL WITH TRELOAR’S DATA IN
SIMPLE TENSION, PURE SHEAR, AND
EQUIBIAXIAL TENSION. From Ogden [1972].

EXAMPLE 3:  CURVE FIT TO FOAM DATA



VISCOELASTICITY  

The data representing a time-dependent or viscoelastic

response of materials can be approximated by a Prony

series, based on relaxation or creep test. If the

deformation is large, a relaxation test is more accurate.

If the data is obtained from a creep test, a Prony series

inversion must be performed before using it as an input

to Marc. For a linear viscoelastic material, either the

shear and bulk moduli, or the Young's modulus and

Poisson's ratio may be expressed in terms of a Prony

series. For large strain viscoelasticity, the elastic strain

energy or the stress is expressed in terms of Prony series.

MSC.Marc Mentat attempts to fit the entered data based

on a procedure described in [Daubisse, 1986].

EXAMPLE 4: DETERMINING

VISCOELASTIC CONSTANTS

The figure on the right shows typical stress-time plot for

large strain viscoelastic material in relaxation test. The

Prony coefficients are obtained from fitting the

relaxation test data. 

A U T O M A T I C D E T E R M I N A T I O N O F M A T E R I A L P A R A M E T E R S F R O M T E S T D A T A
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EXAMPLE 4::  CURVE FIT TO VISCOELASTIC RELAXATION DATA
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The most important and perhaps the most difficult

aspect of design analysis is failure prediction.

Failure in rubber can occur

because of flaws introduced

during the manufacturing

processes (for example,

compound mixing,

extrusion, molding, or

vulcanization, etc.) or

fatigue caused by service

loads and/or material

degradation due 

to environmental/

mechanical/thermal

conditions. Along these

lines, [Simo, 1987]

developed a damage model

incorporated in a large-

strain viscoelasticity

framework to simulate the

stiffness loss and energy

dissipation in polymers.

This model is currently

implemented in Marc.

Damage and Mullins’ effect

in filled polymers was

simulated by Govindjee and Simo, using fully

micromechanical damage [1991] 

and continuum micromechanical damage 

[1992] models. 

Recently, researchers have calculated tearing energy

to simulate crack growth in an elastomeric

material using the popular fracture mechanics

concept of J-integral [Cheng and Becker, 1992].

Using the virtual crack extension method

[Pidaparti, Yang, and Soedel, 1992] predicted the

critical loads for crack growth. Also, the initiation

and the initiation direction was found in good

agreement with the experimental data for filled

Styrene Butadiene Rubber. In a study of the fracture

of bonded rubber blocks under compression, [Gent,

Chang, and Leung, 1993] found that:  (1) under

static compression, two modes of fracture are

possible—circumferential tearing at or near the

bonded edges, and splitting open of the free surface;

and, (2) under cyclic compression, the most likely 

fracture mode of the rubber is by crack

propagation, breaking away the bulged volume.

For cord-reinforced

composites, besides damage

and fracture of the rubber

matrix, the critical modes of

failure are ply separation,

debonding between layers of

dissimilar materials, fiber

pull-out due to lack of

adhesion, and

microbuckling of cords.

Besides mechanical loading,

thermal and viscoelastic

effects play a critical role in

failure of cord-rubber

composites.  Frictional

heating at cord-rubber

interface and internal heat

build-up due to hysteresis in

rubber cause the

temperature of the material

to rise.  Due to low thermal

conductivity of rubber, the

temperatures can rise to a

very high value, causing

adhesion failures and microcracking in the rubber

matrix.  No good models exist currently in open

literature to simulate the above failures.

4S E C T I O N D A M A G E A N D F A I L U R E

TEARING NEAR THE BONDED EDGES. 
From Gent et. al. [1992]

FATIGUE FAILURE OF BONDED
ELASTOMER BLOCK. 
FROM GENT ET. AL. [1992]

SPLITTING OPEN OF THE FREE 
SURFACE.  From Gent et. al. [1992]

TWO POSSIBLE FRACTURE MODES 
UNDER STATIC COMPRESSION
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A widespread use of rubber is for shock/vibration

isolation and noise suppression in transportation

vehicles, machinery, and buildings. These common

rubber components include: snubbers, load bearing

pads, engine mounts, bearings, bushings, air

springs, bumpers, and so forth. Recent seismic

isolation applications have seen increased usage of

laminated rubber bearings for the foundation

designs of buildings, highway and bridge structures

(especially in the United States and Japan). These

applications take advantage of well-known

characteristics of rubber: energy absorption and

damping, flexibility, resilience, long service life,

and moldability.

A dynamic analysis is required

whenever inertial effects are

important, for example, high

speed rolling of tires or

sudden loss of contact in a

snap-through buckling

analysis. When inertial effects

are unimportant, such as for

engine mounts and building

bearings, performing a

dynamic analysis is

unnecessary. When the

viscous effects are important

for such cases, a quasi-static

analysis is performed to

obtain the overall deformation

which is followed by a

harmonic analysis to obtain

frequencies and mode shapes.

DAMPING

The nature of damping is

complex and is still poorly

understood. Common

damping models include:

PROPORTIONAL (RAYLEIGH) DAMPING—assumes

that damping may be decomposed as a linear

combination of the stiffness and mass matrices.

COULOMB DAMPING—or dry friction, comes from

the motion of a body on a dry surface (for example,

on the areas of support).

VISCOUS DAMPING—occurs when a viscous 

fluid hinders the motion of the body. The damping

forces are proportional to velocity in the equations

of motion.

JOINT DAMPING—results from internal friction

within the material or at connections between

elements of a structural system.

Internal friction in the elastomer accounts for the

damping nature of elastomeric parts. Because of

the viscoelastic behavior of rubber, damping is

dependent on frequency of the excitation. The

presence of damping forces progressively reduces

the amplitude of vibration,

and ultimately stops the

motion when all energy

initially stored in the

system is dissipated.

Although it also exists in

metals, damping is

especially important in the

design of rubber

components. In the

Maxwell and Kelvin

models discussed in

Section 2.2, damping is

represented by the

dashpot and is usually

assumed to be a linear

function of the velocity

in the equations of

motion. The treatment of

damping in dynamics problems may be found in

any book on vibrations or structural dynamics.

MODAL EXTRACTION

A popular and efficient modal (eigenvalue)

extraction method in FEA codes is the Lanczos

method. This method has been proven by

researchers to be faster and more accurate than the

basic subspace iteration method. For the case of

proportional damping, real modes give useful

information (the natural frequencies). In the case of

nonproportional damping, complex modes result.

Natural frequencies are dependent upon pre-stress and

material properties; both of these would require

nonlinear analysis. This factor is important in the

design of isolation mounts for buildings.

SMALL-AMPLITUDE VIBRATIONS IN

VISCOELASTIC SOLIDS: USE OF

“PHI-FUNCTIONS” AND TIME VS.
FREQUENCY DOMAIN ANALYSIS

In the analysis of an engine

mount, it is often important to

model small-amplitude

vibrations superimposed upon

a large initial deformation. The

problem of small-amplitude

vibrations of sinusoidally-

excited deformed viscoelastic

solids was studied by [Morman

and Nagtegaal, 1983] using the

so-called method of Phi-

functions. The method was

applied to improve the design

of carbon black-filled butyl

rubber body mounts and

carbon black filled natural

rubber suspension bushings in

several car designs. The

material was assumed to be

isotropic, isothermal,

incompressible, and to behave

according to a “fading

memory” finite-deformation

linear viscoelasticity theory.

S E C T I O N 5

STEADY STATE
VIBRATIONS IN
A STATICALLY
STRETCHED
AND TWISTED
VISCOELASTIC
CYLINDER

FINITE ELEMENT SOLUTION: 
AXIAL FORCE VS. STRETCH RATIO. 

FINITE ELEMENT
MODEL OF 30° WEDGE

FINITE ELEMENT SOLUTION: 
TORQUE VS. TWIST. From Morman
and Nagtegaal [1983].
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This method is available in the Marc code and uses the

third-order invariant form of the James-Green-Simpson

strain energy function. Morman and Nagtegaal’s FEA

results using Marc for the steady-state vibrations of a

stretched and twisted viscoelastic cylinder which is

subjected to a large initial deformation can be seen to

agree well with observed results. The finite element

model is a 30-degree wedge.

The same type of dynamic analysis of a viscoelastic body

subjected to harmonic excitation may also be applied to

many materials, including biomaterials such as human

tissues [Fung, 1981].

TIME vs. FREQUENCY DOMAIN VISCOELASTIC

ANALYSIS — In viscoelastic problems, both time and

frequency domains are used. In time domain analysis,

experimental data is required over the time domain of

interest and a Prony series is usually used to represent

the data. In frequency domain analysis, Laplace

transform techniques and harmonic excitation are

commonly used. The storage modulus and loss modulus

are dependent upon frequency (and amplitude for filled

rubbers), and one needs to be aware of the in-phase and

out-of-phase concepts [Christensen, 1982]. In linear

viscoelastic problems with harmonic loading, the

behavior can be characterized in the frequency domain

in terms of the storage and loss moduli as shown in the

figure. Notice that in viscoelastic materials (assuming

harmonic loading), the storage modulus typically

increases with frequency, but the loss modulus first

increases with frequency and then decreases to zero. This

subject is very complex: as the frequency increases, the

state of the rubber changes from an elastomer to a glass,

with the maximum in the loss modulus signaling the

transition to the glassy state. In unfilled rubbers, the

storage and loss moduli are dependent on the frequency,

but the former is largely independent on the strain

amplitude. In filled rubbers, the storage modulus

depends significantly on the strain amplitude.

DIRECT TIME INTEGRATION

METHODS

In transient nonlinear dynamics, both implicit and

explicit direct integration methods are available for

solving the equations of motion. Explicit methods

include Central difference, while the implicit schemes

include Newmark-beta, Wilson-theta, Hilber-Hughes-

Taylor, and Houbolt methods. The choice of whether to

use an implicit or explicit method is very subtle and

depends on: the nature of the dynamic problem and the

material; the type of

finite elements making

up the model; and the

magnitude of the speed

of sound in 

the material.

IMPLICIT METHODS

—  In an implicit

method, the nonlinear

matrix equations of

motion are solved at

each time step to

advance the solution.

Treatment of boundary

nonlinearities must

occur within a time step. Large time steps may be used

in implicit, dynamic analysis. The most popular implicit

method (offered in several FEA codes) is the Newmark-

beta method, which is unconditionally stable; however, it

does not preserve the total angular momentum of 

the system. 

As for the use of dynamic methods in viscoelastic

analysis, no additional damping should be

introduced in the Newmark-beta method or 

the Hilber-Hughes-Taylor method because 

viscoelastic effects are already included in 

the material properties.

EXPLICIT METHODS —  In this method, the solution is

advanced without forming a stiffness matrix, which

makes the coding much simpler, reduces storage

requirements, and improves computational efficiency.

Explicit methods are conditionally stable for undamped

linear systems. For a given time step, an explicit operator

requires fewer computations per time step than an

implicit one.

Explicit methods possess some known disadvantages,

and it is important for users to bear in mind that a

definite stability limit exists, which means that

sometimes extremely small time steps may be

required—resulting in higher computer costs. In nearly

incompressible problems, the speed of sound in the

material approaches infinity, and hence an extremely

small time step is required. A common solution to

overcome these numerical difficulties using explicit

methods is to conjure up a scaled mass matrix—which

is very often assumed to

be diagonal. Finally, if

Lagrange multipliers

are included in the

analysis, special

formulations are

required because they

do not have any

associated mass.

COUPLED

ACOUSTIC–
STRUCTURAL

ANALYSIS

Coupled acoustic-

structural analysis is of great interest to the automobile

industry. Typical application areas would include—

determination of sound transmission in an enclosed

deformable structural cavity; for example, interior noise

level in a car compartment. A typical case is modeling

the deformation of an automobile door seal by the glass

window in order to analyze the static deformation (Case

Study E ) and conduct acoustic harmonic analysis. The

eigenfrequencies, mode shapes, and pressure amplitude

in the compartment thus calculated can be used to

design better door seals. A coupled acoustic-structural

analysis capability also exists in Marc.

In a coupled acoustic-structural analysis (see figure),

both the acoustic medium and the structure are

modeled. In this way, the effect of the acoustic medium

on the dynamic response of the structure and of the

structure on the dynamic response of the acoustic

medium can be taken into account. Such a coupled

analysis is especially important when the natural

frequencies of the acoustic medium and the structure

are in the same range. Since the interface between the

acoustic medium and the structure is determined

automatically by Marc based on the CONTACT option,

setting up the finite element model is relatively easy

since the meshes do not need to be identical at the

interface. In two-dimension, the ADAPT GLOBAL option

D Y N A M I C S A N D V I B R A T I O N

FREQUENCY-DEPENDENT STORAGE AND
LOSS MODULI



may be used to remesh the acoustic region when large

deformations occur in the cavity walls.

This functionality is suited for modeling of coupled

structural acoustics where the acoustic medium is

undergoing small pressure vibrations. It is applicable to

`interior problems' (for example, deformable cavity) and

can simulate a steady state harmonic response.

Modeling of `exterior problems' like acoustic radiation

and scattering is not considered.

D Y N A M I C S A N D V I B R A T I O N
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Rubber is widely used in engine mounts and suspension bushings for

shock/vibration isolation and noise reduction purposes. It possesses

significant damping properties which are very useful in such applications.

Damping can generate heat during cyclic loading. When a piece of rubber is

stretched a few times, a certain amount of stress softening occurs—which

reduces its stiffness and alters its damping characteristics. Fillers in the

rubber also influence the damping behavior. Rubber is viscoelastic and is

usually analyzed using quasi-static methods. (See more detailed discussions

on rubber viscoelasticity in Section 4 and in Section 5.) The usual design

goal is to prolong a component’s service life, implying that an optimized

design should have as low stress levels as possible. Sometimes, a rubber

shock mount is designed to buckle (in order to absorb a large amount of

energy), followed by eventual stiffening.

This bushing example

assumes a Mooney-Rivlin

strain energy function. As

with the other case studies,

the analysis is static.

Automated contact analysis

is used, where the top rigid

surface moves downwards,

causing the rubber to

contact itself. Mesh

distortion is usually a

problem in such analyses.

The figures show the

deformed geometry and

equivalent Cauchy stress

distributions after

increments 20 and 40. The

FEA code must be able to handle such variable contact

automatically.  This analysis was performed both with and

without adaptive meshing.  One may observe that in using the adaptive

meshing technique, additional elements are automatically located in regions

of stress concentrations and high stress gradients.  This improves the

accuracy of the solution in complex nonlinear problems.

Notes: In order for the stress analysis to be rigorous and complete, the

engineer may need to take into account several real-life phenomena ignored

in this example: material damage; viscoelastic behavior—to account for

creep and relaxation effects; actual service environments—which typically

include combined axial, radial, and torsional loadings, and very often, a

metallic sleeve around the rubber insert; bushing preload (if any);

dynamic (inertial) effects; and fracture and tearing effects.

28

DC A S E S T U D Y R U B B E R M O U N T

EQUIVALENT CAUCHY STRESSES: INCREMENT 20

RIGID SURFACE

RIGID SURFACE

EQUIVALENT CAUCHY STRESSES: USING
ADAPTIVE MESHING

RIGID SURFACE

RIGID SURFACE

EQUIVALENT CAUCHY STRESSES: INCREMENT 40

RIGID SURFACE

RIGID SURFACE
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Rubber products always seem to involve “contact”

versus “no-contact” conditions--for instance, rubber

gaskets and the contact of a car tire with the road. To

see applications of Marc to analyze typical 2-D

rubber contact problems, see Case Studies A, D, and

E. For 3-D examples, look at Case Studies B 

and C.

CONTACT AS A NONLINEAR

CONSTRAINT PROBLEM

Contact, by nature, is a nonlinear boundary value

problem. During contact, both the forces

transmitted across the surface and the area of

contact change. Because rubber is flexible, this

change in the contact area is both significant and

difficult to model using earlier methodologies

(such as gap elements). The contact stress is

transmitted in the normal direction. If friction is

present, shear stress is also transmitted. 

Mathematically, the contact problem occurs as a

constrained optimization problem where contact

conditions occur as inequalities described as Kuhn-

Tucker conditions. Among the several approaches

within the finite element framework that have been

used to model the frictional contact and impose the

nonpenetration constraint (to prohibit the overlap

of contact bodies), the most popular ones include:

Penalty Methods [Peric and Owen, 1992],

Langrange Multiplier [Chaudhary and Bathe,

1986], Augmented Lagrangian [Laursen and Simo,

1993], Perturbed Lagrangian [Simo, Wriggers, and

Taylor, 1985], Hybrid Methods [Wunderlich, 1981],

Gap Elements, Interface Elements, direct appli-

cation of contact forces, and Solver Constraints. 

One important point to recognize is that the use of

interface elements of any kind requires the user to

know a priori where contact will occur. Since

rubber is flexible, guessing the location of the

contact area is very difficult, thereby resulting in

incorrect loads being transmitted across the

surfaces. An improper choice of penalty parameter

in the penalty methods can lead to either

penetration (low penalty number) or numerical ill-

conditioning (high penalty number). The

Langrange multiplier method leads to high solution

cost due to extra variables for contact pressure, in 

addition to the possible numerical ill-conditioning.

In this regard, Marc bypasses the above objectives

by the solver constraint method to solve the general

2-D/3-D multibody contact. This method allows an

accurate modeling of contact without the problems

associated with other methods.

Both deformable-to-rigid and deformable-to-

deformable contact situations are allowed in Marc.

The user needs only to identify bodies which are

potential candidates for contact during the analysis.

Self-contact, common in rubber problems, is also

permitted. The bodies can be either rigid or

deformable, and the algorithm tracks variable

contact conditions automatically. Besides

modeling the rigid bodies as analytical, Marc also

allows the analytical treatment of deformable

bodies. This improves the accuracy of the solution

by representing the geometry better than the

discrete finite elements. This is important for

concentric shafts or rolling simulation. The user no

longer needs to worry about the location and

open/close status checks of “gap elements,” or

about “master-slave” relationships. Also, coupled

thermo-mechanical contact problems (for example,

rolling, casting, extrusion, car tire) and dynamic

contact problems can be handled.

FRICTION

Friction is a complex phenomenon. Martins and

Oden have published two comprehensive studies on

the physics of static and kinetic friction, and

computational models [Martins and Oden, 1985,

1990]. Surface imperfections, stick-slip motions,

material softening due to heat in the contact area,

time- and rate-dependence of the coefficient of

static friction, and the oscillatory and unstable

nature of sliding should all be considered when

performing sophisticated rubber contact analysis.

Use of a carefully measured friction coefficient will

also help to achieve success. Experience has shown

that the proper simulation of friction is extremely

important for success in rubber contact analyses.

When friction is present, bodies in contact develop

frictional shear stresses at the interface. As for the

value of the coefficient of friction, “steel-to-steel”

contact results in a significantly lower coefficient 

than “rubber-to-steel” or “rubber-to-rubber” contact.

Experiments have confirmed that the various

components contributing to friction force in rubber are:

Ffriction = Fadhesive + Fdeformation + Fviscous + Ftearing

Fadhesive is caused by surface adhesion kinetics and bulk

mechanical properties.  Fdeformation is due to partial

irreversibility (damping loss) during the deformation of

rubber. Fviscous represents the existence of a layer of either

absorbed or liquid species between rubber and contact

surface. Ftearing is due to the fact that some solid surfaces

(due to roughness characteristics) tear off particles from

rubber. This phenomenon is also responsible for the wear.

In many rubber applications, however, the design

objective is to increase the friction and, hence, the

traction (for example, transmission belt, car tire).

Marc offers two classical friction models: Coulomb

friction and shear friction. In addition, a user

subroutine is available in Marc, permitting the user to

constantly monitor the interface conditions and modify

the friction effect if necessary. In this way, friction can be

made to vary arbitrarily—as a function of location,

pressure, temperature, amount of sliding, and other

variables. In order to reduce numerical instabilities in

the transition between sticking and slipping, a

regularization procedure is applied. Sometimes, the

physics of deformation dictates modeling the regions of

sticking fairly accurately (for example, driver pulley

transferring torque through the belt to a driven pulley).

For such cases, a stick-slip friction model based on

Coulomb friction is also available. Because friction

generates heat, a coupled thermo-mechanical analysis is

often required in rubber contact problems.

AUTOMATIC BOUNDARY

CONDITION HANDLING FOR 3-D
CONTACT PROBLEMS

“Real-world” contact problems between rigid and/or

deformable bodies are three-dimensional in nature. To

solve such contact problems, one must define bodies

and their boundary surfaces. In Marc, the definition of

bodies is the key concept in automatically analyzing 3-D

contact. For rigid bodies, one can define the following

surfaces: 4-point patch, ruled surface, plane, tabulated

cylinder, surfaces of revolution, Bezier surfaces and 

S E C T I O N A U T O M AT E D C O N TA C T
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NURBS. These surfaces can be converted into NURBS,

which have the advantage of continuity of the normal

vector along the surface and the flexibility to model

complex surfaces with a single mathematical

description. Such a description of contact bodies is an

essential requirement for robustness of solution

algorithm. Virtually all common surface entities as

defined by the latest IGES standard (Initial Graphics

Exchange Standard) are included. 

Two examples of curved

surfaces that can be used to

define the shape of contact

bodies are the ruled

surface and the Bezier

surface, as shown in the

figures (above and left).

Deformable bodies are

defined by the elements of

which they are made. Once

all the boundary nodes for

a deformable body are

determined by Marc, four-

point patches are automatically created and are

constantly updated with the body deformation. Contact is

determined between a node and all body profiles—

deformable or rigid. A body may fold upon itself, but the

contact will still be automatically detected; this

prevents self-penetration.

Visualization of relevant contact variables, such as

normal and friction forces, are available in 

MSC.Marc Mentat.

A U T O M A T E D C O N T A C T A N A L Y S I S T E C H N I Q U E S

BEZIER SURFACE

RULED SURFACE

CONTACT NORMAL FORCE CONTACT FRICTION FORCE
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Automotive body seals are necessary due to the presence of openings in the

car body such as passenger doors, windows, engine and trunk lids, and

sunroofs. The requirements of static seals, such as those around

windshields, are important but relatively simple. On the other hand,

dynamic seals, such as door and window seals, are complex in function.

They must not only maximize the seal between fixed and movable

components, but must also compensate for the manufacturing tolerances of

various body parts.

Material requirements for automotive seals include: resilience, weather

resistance (including ultraviolet radiation effects), bonding strength, tear

and abrasion resistance, surface finish, and strain resistance. Mechanical

requirements include: sealing of components against water, air, dust, and

noise; ease of installation; and closing/cycling effort. Imagine how annoyed

the passengers inside a car would feel should such a seal fail!

Historically, the design and prototyping of automotive seals have relied on

experience, empirical data, and “trial and error.” Today,

however, most leading seal manufacturers use nonlinear

FEA to optimize their seal designs early in the

design cycle.

A typical car door seal is shown. It is 

desired to analyze the seal subjected to 

three loading conditions: 

(1) mount-to-door frame; 

(2) door closure; and 

(3) window closure. 

The rubber is assumed to be isotropic, with a

Mooney-Rivlin strain energy density function.

Increment 17 shows the deformed geometry and the equivalent Cauchy

stress (see Section 2) distribution when the door frame moves downward.

Increment 46 shows the effects of door closure. And, finally, increment 87

shows the results after window closure. 

Notes: In this type of analysis, sliding contact and potential contact of the

body with itself are important. This example illustrates how a modern

nonlinear FEA code can easily handle difficulties with complex boundary

conditions, a problem which defied solution in the 1970-1985 period when

gap and interface elements were widely used in many FEA codes (…and

probably never converged in many cases). An automated solution procedure

which keeps track of the multibody movements and variable contact

conditions is crucial for success here. Such an analysis helps the designer to

understand and improve the seal behavior by providing information about

stresses, strains, reaction forces, and deformation histories. It also tells the

designer where the rubber material is best used— leading to an optimum

design of the car door seal for its expected dynamic loading histories.

EC A S E S T U D Y C A R D O O R S E A L :  A U T O M AT E D

M U LT I B O D Y C O N TA C T

EQUIVALENT CAUCHY STRESS CONTOURS:
MOUNT-TO-DOOR FRAME (INCREMENT 17)

WINDOW CLOSURE (INCREMENT 87)

DOOR CLOSURE (INCREMENT 46)
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The core of a typical design process encompasses

three phases: preprocessing of data, solution, and

postprocessing. In the preprocessing phase, besides

the data required in a typical linear analysis, a user

must specify certain nonlinear analysis

controls (analysis procedures,

“contact” control parameters,

convergence controls, etc.) and

additional material properties (for

example, Mooney-Rivlin and Ogden

coefficients) required for a nonlinear

rubber analysis.

In the solution phase, the key

difference between nonlinear and

linear FEA is that the solver performs

the analysis in load steps (called

increments). Within each increment,

for implicit analysis, the program seeks

a solution by iteration until

equilibrium is achieved, before

proceeding on to the next increment. A

modern nonlinear FEA code like Marc

helps the user achieve success by first

querying for acceptable tolerances in

force, displacement strain energy, or

other parameters. Then, it

automatically increases or decreases

the step size in order to achieve a

converged solution using a minimum

number of increments. Lack of

convergence can take place due to

input errors, improper modeling of

physical phenomenon, or real physical

instabilities. Therefore, the objective of a successful

nonlinear analysis is to obtain an accurate,

converged solution at the least cost.

On the computational front, several key features

distinguish Marc from other existing nonlinear FEA

codes. Features on the materials side include, a very

robust singularity-free implementation for case of

equal stretches of the Ogden model, and special

treatment for extremely large compressive stresses

generated during deformation. Fast, efficient

elements incorporating special treatment for

incompressibility and hourglassing modes, and 

solution schemes which are able to analyze

buckling and post-buckling regime.

The key innovation for solving the industry scale

elastomers problems with 2-D/3-D models, was the

development of state-of-art contact algorithms in

Marc. As a result, even difficult rubber contact

problems with complex boundary conditions lend

themselves to routine analysis for design.

Sophisticated algorithms detect contact, warn about

penetration, and help the user achieve convergence

with a minimum of effort and computer time. A

notable feature in Marc is its ability to handle

deformable-to deformable contact, a problem which

poses a formidable challenge to other nonlinear

codes. However, the challenge of rendering such

complex nonlinear analysis to a push-button

technology still looms large.

7S E C T I O N A U T O M AT E D S O L U T I O N S T R AT E G I E S



For ease-of-use and computational savings, Marc

allows a data transfer capability from axisymmetric to

3-D analysis. In many cases, the component has an

initially axisymmetric geometry and is initially

axisymmetrically loaded (see figure on next page)

and, hence, is truly axisymmetric. The second stage of

the problem can involve asymmetric loading and

hence be fully three-dimensional. This

function transfers the results from the

nonlinear axisymmetric model to the 3-D

analysis. Large savings in computational

cost can be expected. This feature can be

used with lower- and higher-order

displacement and Herrmann elements

in static, dynamic, and heat transfer

analysis. This feature can be used 

with both rubber elasticity and 

metal plasticity. 

The role of graphics (pre- and

postprocessing) capabilities cannot be

underestimated. Rapid developments

in the nonlinear finite element

technology has brought the modeling

of full scale industry problems within

reach. Hence, it is not uncommon

for the model preparation stage to be

more time consuming than the actual analysis itself.

The interactive graphics program, MSC.Marc Mentat, is

tightly coupled with the analysis program, Marc.

Analysis with Marc can also be done via MSC.Patran.

Besides a wide array of geometry modeling features, both

MSC.Marc Mentat and MSC.Patran offer a variety of

mesh-generation capability in 2-D and 3-D.

Augmenting the array of visualization techniques are

the animation and movie capabilities in MSC.Marc

Mentat. In addition, interfaces to other commercial CAD

systems allow designers to access the nonlinear

capabilities of Marc while operating in their familiar

environment.

A U T O M A T E D S O L U T I O N S T R A T E G I E S
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AXISYMMETRIC AXIAL MOTION

3-D RADIAL MOTION

DATA TRANSFER FROM AXISYMMETRIC TO 3-D ANALYSIS



In the analysis of metal or rubber, the materials

may be deformed from some initial (maybe simple)

shape to a final, very often, complex shape. During

the process, the deformation can be so large that

the mesh used to model the materials may become

highly distorted, and the analysis cannot go any

further without using some special techniques.

Remeshing/rezoning in Marc is a useful feature to

overcome these difficulties.

In earlier versions of Marc (before Marc 2000), the

remeshing/rezoning is done manually. When the

mesh becomes too distorted because of the large 

deformation to continue the analysis, the analysis

is stopped. A new mesh is created based on the

deformed shape of the contact body to be rezoned. A

data mapping is performed to transfer necessary

data from the old, deformed mesh to the new mesh.

The contact conditions are redefined, and the

analysis continues.

In Marc 2000, the above steps are done

automatically (see figure on next page). Based on

the different remeshing criteria you specified, the

program determines when the remeshing/rezoning

is required. Remeshing/rezoning can be carried out

for one or more contact bodies at any increment.

Different bodies can use different

remeshing/rezoning criteria.

Besides rezoning, Marc also offers an h-method

based adaptive mesh refinement capability (an

automated process in which mesh is repetitively

enriched until the error criterion is satisfied) for

both linear as well as nonlinear analysis. Several

error criteria are available to the user for

subdividing the mesh adaptively. This is demonstrated

in Case Study D (page 28).

8S E C T I O N A U T O M AT E D R E M E S H I N G A N D R E Z O N I N G

DATA PREPARATION

• FE model (nodes, elements)
• material properties 
• loads
• boundary conditions

Linear FEA Nonlinear FEA

(same as for linear FEA)

Nonlinear analysis 
controls required

Material data to 
represent nonlinear 
behavior required, e.g.:

• material constants for 
strain energy functions

OUTPUT
• displacements
• strains
• stresses
• strain energy density

RESULTS EVALUATION

• deformed geometry
• strain distributions
• stress distributions
• temperature distributions

POST-PROCESSING

PRE-PROCESSING

• thermal strains
• creep strains
• plastic strains
• Cauchy stresses
• failure criteria

• contact forces distribution
• strain rates
• history plots
• derived variables

INCREMENTAL
LOOP

• update 
configuration

• update contact 
conditions

ITERATION 
LOOP REZONING

SOLUTION

34



A successful rubber analysis requires: a state-of-the-art

nonlinear FEA code with automated contact analysis

capabilities; availability of the necessary test data and

friction coefficients; an experienced user; careful

evaluation and application of the analysis results; and

good pre- and postprocessing software which is closely

coupled to the solver.

A U T O M A T E D R E M E S H I N G A N D R E Z O N I N G
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AUTOMATIC REMESHING AND REZONING OF A RUBBER SEAL
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Nonlinear FEA of elastomers has come a long way

in the past twenty five years. Previous difficulties in

the 1970-1985 period with handling complex

contact boundary conditions have now been solved,

recently, significant progress also has been made in

2-D and 3-D automated adaptive meshing, and

these automated procedures are now being used in

the design/analysis of rubber components. Areas

which still require further research and

development include:

• Adaptive meshing and rezoning for nonlinear

FEA (especially for 3-D problems)

• Coupling of design optimization methods with

nonlinear FEA

• Methods for dealing with crack or void initiation

and propagation in elastomers

• Improved modeling of friction effects

• Material instabilities-for example., surface folds

and wrinkling

• Viscoelastic effects in filled rubbers

• Improved plastics and other polymer 

models (to model large elastic as well as

inelastic deformations)

• Coupled processes involving interaction 

between mechanical, chemical, thermal, and

electrical phenomena.

9S E C T I O N C U R R E N T T R E N D S A N D F U T U R E R E S E A R C H



37

MSC.Software offers an array of tools and services to

help the customer design their products efficiently:

MATERIAL CHARACTERIZATION. Very often,

obtaining the correct material parameters for

analysis from test data is the major obstacle to a

successful simulation. In such cases, Marc can refer

the customer to materials testing firms which

specialize in this type of testing (the same firm can

also be used for testing the structural integrity of

the finished elastomeric product). The required

tests to characterize a material are given in

Appendix C (Courtesy: Akron Rubber Development

Lab and Axel Products, Inc.). In addition, a curve

fitting procedure is required to determine the

coefficients of the selected model. Details of the

curve fitting program in MSC.Marc Mentat, used

along with Marc, are described in Section 3.

TRAINING. The MSC.Institute of Technology

offers a wide variety of training workshops,

including MAR 103 “Experimental Elastomer

Analysis”. This is a hands-on workshop covering

material testing, material modeling and finite

element analysis of elastomers. Instructors from

MSC.Software and Axel Products, Inc. present an

integrated testing and analysis workshop featuring

the experimental facilities of Axel Products, Inc.

and the Marc FEA software. Attendees perform

elastomer experiments using laboratory

instruments to create data appropriate for use in

building elastomer material models in FEA.

Material models are then developed and examined

on workstations running Marc.

Photos below show attendees performing analysis

using MSC.Marc Software.

CUSTOMER SUPPORT. Recognizing the complex

nature of FEA of elastomers, MSC.Software offers

prompt and professional customer support. For

rubber FEA, the user should expect help from a

knowledgeable support person or, in some

complicated cases, the particular developer who

created that part of the analysis capability. The

availability of competent support is often crucial to

success in nonlinear FEA.

CONSULTING. Most nonlinear FEA software

developers, such as MSC.Software also offer

consulting services to assist an organization in

performing rubber FEA. This service is especially

valuable for a company that either does not possess

an FEA capability or their in-house engineers do

not have nonlinear analysis expertise. The scope of

such consulting work usually includes the

development of a model(s), analyzing the rubber

problem, writing a final report, and sometimes, an

oral presentation of the key results.

DOCUMENTATION. In addition to the reference

documentation; MSC.Software also offers tutorial

documentation. The latter allows new users to try a

rubber analysis similar to their own, and become

familiar with the recommended procedure before

venturing into a difficult rubber contact problem

using a large 3-D model.

ERROR CHECKS AND WARNING MESSAGES.

FEA programs all contain built-in input error

checks. In rubber FEA, the program checks for

items such as: the completeness of input

coefficients for a certain strain energy density

function, contact body definition correctness,

consistency of the nonlinear analysis controls

(tolerances, step size, etc.), friction definition,

whether a user subroutine is used and if the

required data for that subroutine is completely

defined, etc. To help detect potential instability

problems, the code also issues warnings to the user

during the analysis about possible snap-through,

negative eigenvalues, non-positive definiteness, etc.

USER SUBROUTINES. These are a must in

nonlinear FEA that involve complex geometric,

material, and boundary nonlinearities (such as in

rubber and metal forming problems). They allow

the user to define arbitrary variations of material

properties, loads, and boundary conditions as a

S E C T I O N 10 U S E R C O N V E N I E N C E S A N D S E R V I C E S

MAR 103:  EXPERIMENTAL ELASTOMER ANALYSIS TRAINING CLASS IN ACTION. 
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function of time, space, and temperature or some

other state variable. User subroutines give the

flexibility to users to tailor the nonlinear analysis

specifically to their exact problem requirements.

The coding and accuracy verification of user

subroutines is best left to the experienced user. In

rubber FEA, user subroutines can be used, for

instance, to define the dependence of friction

coefficient or some other material property on time,

temperature, or location. More importantly, they

can be also used to define a new material model.

U S E R C O N V E N I E N C E S A N D S E R V I C E S
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In the final analysis, the FEA of elastomeric or

viscoelastic structures is a nontrivial undertaking.

This White Paper has presented a lot of information

about what one should know about analyzing

rubber. But, where does one go from here? By that,

we mean what types of questions should be asked

when selecting a code for rubber FEA?

•  Does the FEA code contain the proper material

models? Which is the proper model?

•  Are there suitable finite elements for

incompressible analysis?

•  Does the code have modern automated contact

analysis capabilities?

•  Does the code offer the best choice of elements,

material models, solution algorithms, and

convergence criteria for your situation?

•  Does the code developer have an extensive track

record in analyzing applications similar to

yours? If so, the developer should possess

examples and verification problems similar to

your application.

All these questions relate to the quality of the

nonlinear FEA code and the support. After the code

has been selected, the user should bear in mind

that there are other additional considerations

which help to ensure success. These are “tricks of

the trade” that come with experience in analyzing

rubber parts. For instance, some important

considerations about model definition include:

mesh refinement, specification of the incremental

load schedule, and tolerance selection in the

convergence criterion used. These subtleties 

very often mean the difference between success 

and failure.

Modeling of real world rubber parts is often

complicated by a lack of good material data,

boundary conditions, and knowledge of the actual

field service conditions. Finally, a professional

engineering judgment must be applied to interpret

the numerical simulation results.

S E C T I O N 11
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Early applications of a material which came to be

known as natural rubber (NR), with C5H8 as a

basic monomer unit, involved a product derived

from the Hevea Brazieliensis tree. Other varieties of

NR came from balta, guayule, and gutta-percha.

The superior heat dissipation properties under

cyclic loading, resilience, electrical insulation, high

tensile strength, and wear resistance make NR an

attractive choice over the synthetics in many

applications even today. Some common uses of NR

can be found in golf-ball covers, cable insulation,

tires, etc.

However, the desire to improve

certain properties, like

resistance to environmental

factors such as ozone

degradation and ultraviolet

rays, aging, and protection

against industrial oils, led to

the discovery of synthetic rubber.

The advent of World War II saw

an increased interest and

necessity of the development of

synthetic rubber compounds.

Commonly known synthetic rubbers

are Neoprene, Isoprene, Styrene-

Butadiene, Butyl, Nitril, Acrylic,

Butadiene, and Urethanes. 

The basis of modern synthetic

rubbers lies in synthesis of

macromolecules by way of step-growth 

or chain-growth polymerization.

Rubber products are manufactured via a

vulcanization process. In an unvulcanized state,

rubber does not have the desired tensile strength, is

sticky, and deforms permanently under large

deformations. Rubber is vulcanized at high

temperatures with addition of sulfur, accelerators

and curatives under application of pressure. The

sulfur and carbon atoms, together with metal ions

and organic radicals, form the crosslinks between

polymer chains. This crosslink network determines

the physical properties and is controlled by

vulcanization time and temperature. Mechanically,

the process manifests itself by an increase of

retractile force and a possession of “rubbery”

properties such as increased elasticity.

After prolonged exposure to the sun, rubber parts

become discolored, brittle, and exhibit crazing and

stress cracks. To inhibit these ultraviolet radiation

effects, rubber manufacturers typically use

“stabilizers” (for example, carbon black, an

excellent absorber) and “masks” (for example,

urethane-based paint). These are used, for instance,

in exterior rubber gaskets and seals for cars. In the

United States, federal regulations require that

exposed rubber components must withstand

exposure to ultraviolet radiation for approximately

five years. The most damaging effect is due to

ozone, which causes exposed

rubber to become brittle. To

simulate these effects and to

improve the design of

rubber parts, manufacturers

subject specimens to xenon

(or carbon) arcs, where the

specimen is typically 

stretched 20% at certain

prescribed temperatures.

Fillers play an extremely

important role in the

manufacturing of rubber to

impart the desired properties.

On one hand, several properties

of unfilled rubbers such as

hardness, abrasion resistance,

tensile, tear strength [Mark,

Erman, and Eirich, 1994] and a possible

redistribution of rubber network stresses can be

enhanced by use of carbon black and silica. On the

other hand, the viscoelastic response and hysteresis

losses are greatly enhanced by fillers

(since the material properties

depend on the strain history).

There is, nevertheless, a correlation

between the above two

characterizations of carbon black.

It is hypothesized that carbon

black particles act as stress

concentrators and originators of

microscopic flaws which precede a gross

macroscopic tearing. However, stress relaxation and

creep reduce the stress concentration at the crack

tip. The increased stresses at the particles produce

molecular orientation or alignment; thereby,

blunting the crack tip and diverting the tear 

from a rapid fracture. Other fillers like wax, paraffin,

and mineral oil are added to increase the heat

dissipation capability.

The distinctive features of rubber elasticity have a

thermodynamical basis:

δE                    δS 
F  = (——)– T (——–)δL    T δL    T

Thus, at equilibrium, the force (F) exerted on stretching

a rubber strip equals the rate of change of internal

energy (E) and entropy (S) with length (L) for a given

temperature (T). It has been concluded from

experiments that rubber elasticity manifests itself in the

second term of the above equation, except at low

elongations (<10%), at which the thermal expansion

masks the entropy effect resulting in thermoelastic

inversion, or at very large elongations, at which

molecular chain orientation and strain-induced

crystallization occurs.

Rubber is composed of long chains of molecules,

oriented randomly due to thermal agitation of their

segments.  Breakdown of chains, due to straining, results

in damage and stiffness reduction of the elastomer.

Entangled chains have significant impact on the

viscoelastic properties such as creep and stress relaxation

and melt viscosity.

AA P P E N D I X P H Y S I C S O F R U B B E R

TYPICAL POLYMER MOLECULES

CARBON BLACK FILLED RUBBER. 
From Govindjee and Simo [1991].
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The following table shows how some mechanical properties of rubber compare with other materials:

YOUNG’S BULK SHEAR POISSON’S
MATERIAL MODULUS MODULUS MODULUS RATIO

(MPa) (MPa) (MPa)

Rubber (typical range) 0.76 – 7.60 2,000.00 0.35 – 1.38 ~ 0.50

Lightly Vulcanized Rubber 1.40

Mild Steel 207,348.00 158,967.00 79,483.00 0.29 – 0.30

Aluminum Alloys 69,116.00 67,733.00 23,499.00 0.31

Glass 55,292.00 36,631.00 22,117.00 0.25

Concrete 27,646.00 0.18

Oak 10,021.00

Human Bone (along osteones) 10,021.00

Polyurethane Foam 3.11 2.00

Plastics:

Polyethylene 138.23 – 380.13 89.85 – 255.72 55.29 – 152.05 0.25

Phenolic Laminate 8,501.27 0.25

Polycarbonate 2,384.50 0.35

Cast Acrylic 3,110.22 0.35

Cellulose Acetate 1,520.55

Vinylchloride Acetate 3,179.33
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This Appendix explains the principles underlying

the behavior and numerical treatment of

incompressible materials. (For more details, see

any of the finite element textbooks—for example,

[Hughes, 1987]—listed in the Suggestions for

Further Reading.) Incompressibility is one of the

most troublesome areas in the finite element

analysis of elastomers. Modern computational

mechanics practice in the analysis of

incompressible materials is to suppress the

volumetric component of the strain field by

appropriately selected variational principles.

INCOMPRESSIBLE ELASTICITY

A simple way to understand why incompressibility

results in numerical problems is to examine the

familiar elasticity relationship:

Bulk modulus (K)    
=

2 ( 1 + ν ) 

Shear modulus (G)          3 (1 – 2ν )

For nearly incompressible materials, Poisson’s ratio

υ approaches 0.5, and the bulk modulus becomes

large relative to the shear modulus. In the limit,

when the material is completely incompressible 

(υ = 0.5), all hydrostatic deformation is precluded.

In this limiting case, it is, therefore, not possible to

determine the complete state of stress from strain

only. This indeterminacy difficulty applies not only

to isotropic materials, but also to orthotropic and

anisotropic materials.

Most rubbery and polymeric materials are not

completely incompressible. Typical values of

Poisson’s ratio are in the range of 0.49 to 0.49999.

It is important to note that the use of these values

in finite element codes that have not been tailored

for incompressibility analysis will lead to very

serious numerical errors, caused by the ill-

conditioning resulting from the division by a value

which is nearly zero. More importantly, “mesh

locking” may occur! Filled elastomers, however,

often have Poisson’s ratios of approximately 0.49

and may be considered “nearly incompressible.”

Whenever the material is nearly or completely

incompressible, special finite element formulations

must be used to obtain reliable results, as explained

in the following subsections.

MESH LOCKING AND CONSTRAINT

COUNTING

Whether a particular finite element code is suitable

for analyzing incompressible problems depends on

the type of element used and its formulation. For

instance, standard lower-order quadrilateral

isoparametric elements found in many FEA codes

exhibit extremely poor performance in analyzing

incompressible or nearly incompressible problems

and exhibit a pathological behavior called mesh

locking. “Mesh locking” refers to the inability of

an element to perform accurately in an

incompressible analysis, regardless how refined the

mesh is, due to an over-constrained condition and

insufficient active degrees of freedom. Specifically,

if a standard element is distorted into an hourglass

mode, it will lock as the bulk modulus becomes

infinite. Note that the element locks despite the fact

that its area has remained constant, resulting in

the prediction of too small of a displacement and

too large of a stress. Hence, the locking is a

peculiarity of the finite element discretization, and

special techniques have been used to improve the

behavior of the elements. Some effective analytical

approaches to overcome mesh locking are discussed

in the next subsection.

To check whether an

element will lock, a

method called

constraint counting

has proven to be quite

effective [Nagtegaal,

Parks, and Rice, 1974].

The constraint ratio r

is defined as the ratio of

the active degrees of

freedom to the number

of constraints. Optimal constraint ratios are r = 2

for two-dimensional problems, and r = 3 for three-

dimensional problems. A tendency to lock occurs if

r is less than these values. While constraint ratios

are a helpful engineering tool, they do not ensure

convergence.  A mathematically rigorous approach

instead makes use of the so-called Babuska-Brezzi

stability condition [Hughes, 1987]. Before

embarking on an incompressible analysis,

therefore, the user must exercise extreme care and

fully understand the limitations of the elements to

be used.

OVERVIEW OF ANALYTICAL

APPROACHES*

Modern analytical techniques used in treating

incompressibility effects in finite element codes are

based on the Hellinger-Reissner and Hu-Washizu

variational principles [Zienkiewicz and Taylor,

1989]. Well-known applications of these principles

include assumed strain methods, such as: the

mixed method of [Herrmann, 1965]; the constant

dilatation method of [Nagtegaal, Parks, and Rice,

1974]; the related B-bar methods of [Hughes, 1980]

and [Simo, Taylor, and Pister, 1985]; the Hu-

Washizu methods of [Simo and Taylor, 1991]; the

mixed assumed strain methods used with

incompatible modes by [Simo and Rifai, 1990];

and selective-reduced integration methods. Another

class of approaches is the so-called assumed stress

methods, which are used by researchers such as

T.H.H. Pian and S.N. Atluri and their colleagues.

Mixed methods usually have the stresses, strains,

dilatancy, or a combination

of variables, as unknowns.

The earliest mixed method is

the so-called Herrmann

formulation. A modified

form of the Hellinger-

Reissner variational principle

is used to derive the stiffness

equations. A pressure variable

(energetically conjugate to

the volumetric strain) is

introduced in the form of a

Lagrange multiplier.

Herrmann’s approach has been used since the mid-

1960s and 1970s in FEA codes such as Marc,

TEXGAP, and various in-house codes developed by

leading solid rocket propellant manufacturers. 

The constant dilatation method 

of [Nagtegaal et al., 1974] decouples 

the dilatational (volumetric) and distortional

(isochoric) deformations and interpolates them

independently. Appropriately chosen functions will

BA P P E N D I X N U M E R I C A L T R E AT M E N T
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preclude mesh locking. The B-bar method of

Hughes is a generalization of this method for

linearized kinematics. Selective-reduced integration

under integrates the volumetric terms. However, all

these methods can be shown to be equivalent under

certain conditions [Malkus and Hughes, 1978].

N U M E R I C A L T R E A T M E N T O F I N C O M P R E S S I B I L I T Y
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The testing described herein is to define and to

satisfy the input requirements of hyperelastic

material models that exist in nonlinear finite

element software like MSC.Marc. Although the

experiments are performed separately and the strain

states are different, data from all of the individual

experiments is used as a set. This means that the

specimens used for each of the experiments must be

of the same material. This may seem obvious but if

the specimens are specially molded to

accommodate the differing instrument clamps for

different experiments, it is possible that you may 

be inconsistently testing the material. Remember 

to cut specimens from the same material as 

the application. 

The testing of elastomers for the purpose of

defining material models is often mis-understood.

There are several standards for the testing of

elastomers in tension. However, the experimental

requirements for analysis are somewhat different

than most standardized test methods. The

appropriate experiments are not yet clearly defined

by national or international standards

organizations. This difficulty derives from the

complex mathematical models that are required to

define the nonlinear and the nearly incompressible

attributes of elastomers.The development of

experimental data is so intimately tied to

elastomeric material model development that

MSC.Software joined with the physical testing

laboratory Axel Products, Inc. to create a workshop

called "Experimental Elastomer Analysis" (MAR

103).  In the following tests, the material,

temperature, strain range, strain rates, and

preconditioning should be determined by the

application to be modeled.

PHYSICAL MEASUREMENTS 

Basic physical measurements discussed here are

limited to force, length, and time. Force is usually

measured by a load cell. The load cell actually

measures changes in resistance of strain gages

placed in a bridge on a metal shape that deforms

slightly as the specimen is loaded. The change of

resistance is calibrated to report force. The load cell

can be seen at the top of the specimen in the right

top figure. The output from the load cell enters the

data acquisition system in the computer along with

the initial specimen area. The recorded force is

divided by the initial specimen area automatically

by the data acquisition system. Length or position is

best measured by a non-contacting device such as a

video extensometer as show in the middle right

CA P P E N D I X M AT E R I A L T E S T I N G M E T H O D S

CUT SPECIMENS FROM SAME MATERIAL
150MM X 150MM X 2MM SHEET 

SPECIMEN CUTOUTS

TESTING MACHINE



figure. The video extensometer senses differences in

color between two marks on the specimen. The

length between these two marks is continuously

recorded by the data acquisition system. Another

non-contacting technique is the use of a laser

extensometer. The laser sends out a planar light

which is reflected back from reflector tags attached

to the specimen as shown in the bottom right

figure. At the start of the test, the initial gage

length is entered into the data acquisition system,

and as the test progresses, the change in gage

length is recorded by the data acquisition system.

Time is recorded by the data acquisition system that

synchronizes the force and length measurements.

The data recorded can be output in ASCII files that

contain the engineering stress, engineering strain

and time that are later used for the hyperelastic

material model fitting.

Of course, the temperature and strain rate test

conditions must also be recorded .

M A T E R I A L T E S T I N G M E T H O D S
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LASER EXTENSOMETER WITH TAGS ON SPECIMEN

VIDEO EXTENSOMETER READING
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UNIAXIAL TENSION TEST

a. Deformation state:

λ2 = λ = L/L0 , λ1 = λ3 =   
–

√
–
A/A0

b. Stress state:

σ2 = σ = P/A0 , σ1 = σ3 = 0
Simple tension experiments are very popular for

elastomers. The most significant requirement is

that in order to achieve a state of pure tensile

strain, the specimen be much longer in the

direction of stretching than in the width and

thickness dimensions. The objective is to create an

experiment where there is no lateral constraint to

specimen thinning. One can perform finite element

analysis on the specimen geometry to determine the

specimen length to width ratio. The results of this

analysis will show that the specimen needs to be at

least 10 times longer than the width or thickness.

Since the experiment is not intended to fail the

specimen, there is no need to use a dumbbell

shaped specimen that is commonly used to prevent

specimen failure in the clamps. There is also not

an absolute specimen size requirement. The length

in this case refers to the specimen length between

the instrument clamps. Specimen clamps create an

indeterminate state of stress and strain in the

region surrounding the clamp in the process of

gripping. Therefore, the specimen straining, L/L0,
must be measured on the specimen, but away from

the clamp, where a pure tension strain state is

occurring. A non-contacting strain measuring

device such as a video extensometer or laser

extensometer is required to achieve this. The load,

P, is measured by a load cell. Calipers can be used

to measure the instantaneous area, A, normal to

the load. If this area is not measured, the material

is assumed to be incompressible, V = V0.

M A T E R I A L T E S T I N G M E T H O D S

TENSILE SPECIMEN

SPECIMEN RESPONSE

TENSILE MACHINE

2

13



UNIAXIAL COMPRESSION TEST

a.  Specimen size: 25.3 mm diameter x 

17.8 mm thickness

b. Deformation state:

λ2 = λ = L/L0 , λ1 = λ3 =
–

√
–
A/A0

c.  Stress state:

σ2 = σ = P/A0 , σ1 = σ3 = 0

Uniform states of strain are desired and this is

especially difficult to achieve experimentally in

compression. There are two basic reasons that make

the compression test difficult. For the compression

button depicted, the first difficulty is making the

button so that it becomes thick enough to measure

the gage length. This may require a molded

specimen, rather than extruded or poured sheet.

Hence, the wrong material may be tested. Secondly,

because there is friction between the test specimen

and the instrument platens, the specimen is not

completely free to expand laterally during

compression. Even very small friction coefficient

levels such as 0.1 between the specimen and the

platen can cause substantial shearing strains that

alter the stress response to straining. Often, the

maximum shear strain exceeds the maximum

compression strain! Because the actual friction is

not known, the data cannot be corrected.

Other compression tests include the split Hopkinson

pressure bars designed for soft materials such as

polymers and elastomers which measures high

strain rate data.

For incompressible or nearly incompressible

materials, equal biaxial extension of a specimen

creates a state of strain equivalent to pure

compression. Although the actual experiment is

more complex than the simple compression

experiment, a pure state of strain can be achieved

which will result in a more accurate material

model. The equal biaxial strain state may be

achieved by radial stretching a circular or 

square sheet.

M A T E R I A L T E S T I N G M E T H O D S
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BIAXIAL TENSION TEST

(CIRCULAR) 

a. Deformation state:

λ1 = λ2 = λ = L/L0 , λ3 =  t/t0

b.  Stress state:

σ1 = σ2 = σ , σ3 = 0

The equal biaxial strain state may be achieved by

radial stretching a circular disc. The nominal

equibiaxial stress contained inside the specimen

inner diameter is calculated as: σ = P/A0

where: A0 = πDt0 , D is the original diameter

between punched holes, P is the sum of radial

forces, and t0 is the original thickness. Since the

deformation state is uniform in the plane of the

sheet, the radial components of stress and strains

are constant with the polar and in-plane

rectangular components of stress being the same

value. In other words, if a square or circle are

drawn on the specimen, they deform into a larger

square or circle as the specimen is stretched. Once

again, a non-contacting strain measuring device

must be used such that strain is measured away

from the clamp edges. Finally if the instantaneous

thickness, t, is not measured, the material is

assumed to be incompressible, V = V0.

M A T E R I A L T E S T I N G M E T H O D S

BIAXIAL SPECIMEN

BIAXIAL MACHINE
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BIAXIAL TENSION TEST

(RECTANGULAR) 

a. Deformation state:

λ1 = λ2 = λ = L/L0 , λ3 =  t/t0

b.  Stress state:

σ1 = σ2 = σ , σ3 = 0

The equal biaxial strain state may also be achieved by

radial stretching a square sheet. The nominal

equibiaxial stress contained inside the specimen

calculated as:  σ = P/A0 where:  A0 = Wt0 ,

W is the width and height of the specimen, P is the

average of the forces normal to the width and height of

the specimen, and t0 is the original thickness. Once

again, a non-contacting strain measuring device must

be used such that strain is measured away from the

clamp edges. Finally if the instantaneous thickness, t, is

not measured, the material is assumed to be

incompressible,  V = V0.

BIAXIAL MACHINE

M A T E R I A L T E S T I N G M E T H O D S
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BIAXIAL SPECIMEN
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PLANAR (PURE ) SHEAR TEST 

a. Deformation state:

λ1 = 1, λ 2 = λ = L/L0, λ3 = λ2t/t0

b. Stress state:

σ1 ≠  0 ,       σ2 = σ ,     σ3 =  0

The pure shear experiment used for analysis is not what

most of us would expect. The experiment appears at first

glance to be nothing more than a very wide tensile test.

However, because the material is nearly incompressible,

a state of pure shear exists in the specimen at a 45

degree angle to the stretching direction. The most

significant aspect of the specimen is that it is much

shorter in the direction of stretching than the width. The

objective is to create an experiment where the specimen

is perfectly constrained in the lateral direction such that

all specimen thinning occurs in the thickness direction.

This requires that the specimen be at least 10 times

wider than the length in the stretching direction. This

experiment is very sensitive to this ratio. A non-

contacting strain measuring device must be used to

measure strain away from the clamp edges where the

pure strain state is occurring (top right figure). If the

instantaneous thickness, t, is not measured, the

material is assumed to be incompressible, V = V0.

M A T E R I A L T E S T I N G M E T H O D S

PLANAR SHEAR SPECIMEN

LASER EXTENSOMETER

PLANAR SHEAR TEST WITH LASER REFLECTION TAGS
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SIMPLE SHEAR TEST 

a. Deformation state:

λ1 =  λ , λ2 =  1/λ  ,        λ3 =  1

b. Stress state:

The dual lap simple shear test is used in the tire industry.

As a result of low shear strains, the end plates do not

move in the vertical direction in this test. The quad lap

simple shear test is used by the bearings industry. Since

the material shear requirements are much higher, the

end plates in the quad lap shear test are allowed to move

in the vertical direction due to development of very high

normal stresses (in mechanics, this phenomenon is

termed as Poynting Effect). This test does not allow for

the measurement of compressibility and as such this the

volumetric compression test can be performed or the

material assumed to be incompressible.

M A T E R I A L T E S T I N G M E T H O D S
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VOLUMETRIC TEST

Specimen size: 17.8 mm diameter x 2 mm thickness.

Eight buttons stacked and lubricated with silicone oil.

a. Deformation state:

λ1 = 1 , λ2 = 1, λ3 = L/L0 

b. Stress state:

σ1 = σ2 = σ3 = –|P/A0|
A0 is the cross-sectional area of the plunger and P
is the force on the plunger.

Information regarding the bulk modulus can also be

obtained by measuring relative areas in an uniaxial

tensile or biaxial test. In this case, volumetric tests need

not be performed. Otherwise this volumetric test may 

be performed. 

For materials where compressibility is very significant,

for example, foams, volumetric tests must be performed

by using a pressurized incompressible fluid such as

water and the corresponding deformation and stress

states are:

a. Deformation state:

λ1 =  λ ,           λ2 =  λ ,             λ3 =  λ , 

b. Stress state:

σ1 = σ2 = σ3 = –p

where:  λ = (V/V0)1/3 and p is the fluid pressure.

M A T E R I A L T E S T I N G M E T H O D S

VOLUMETRIC COMPRESSION TEST

2
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VISCOELASTIC STRESS
RELAXATION T EST 

When a constant strain is applied to a rubber sample,

the force necessary to maintain that strain is not

constant but decreases with time, this behavior is called

stress relaxation. Conversely, when a rubber sample is

subjected to a constant stress, an increase in the

deformation takes place with time, this behavior is

called creep. Stress relaxation of a material can be

measured in tension, biaxial tension, compression, or

shear. A simple loading experiment where the specimen

is stretched to a set strain and allowed to relax may be

performed to provide sufficient data to model this

behavior. The material data is typically fitted using a

Prony or exponential series expansion. The accuracy

with which this may be fitted is sensitive to the number

of decades of time data. This means that the relaxation

data from 0.1 second to 1 second is as valuable to the fit

as the relaxation data from 1 second to 10 seconds and

so on. As such, proper data collection early in the

experiment can provide several decades of time data

without running the experiment over several days.

The link below is a discussion of stress relaxation testing

and the use of Arrhenius plots to estimate the useful

lifetime of elastomeric components.

http://www.axelproducts.com/downloads/Relax.pdf

M A T E R I A L T E S T I N G M E T H O D S
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FRICTION

Because elastomers are commonly used in sealing

applications, friction plays an important role in the

performance of these applications. Friction is the force

that resists the sliding of two materials relative to each

other. The friction force is: (1) approximately

independent of the area of contact over a wide limits and

(2) is proportional to the normal force between the two

materials. These two laws of friction were discovered

experimentally by Leonardo da Vinci in the 13th century,

rediscovered in 1699 by G. Amontons and latter refined

by Charles Coulomb in the 16th century. Coulomb

performed many experiments on friction and pointed

out the difference between static and dynamic friction.

This type of friction is referred to as Coulomb friction

today. In order to model friction in finite element

analysis, one needs to measure the aforementioned

proportionally factor or coefficient of friction, µ . The

measurement of µ is depicted here where a sled with a

rubber bottom is pulled along a glass surface. The

normal force is known and the friction force is

measured. Various lubricants are placed between 

the two surfaces which greatly influence the friction

forces measured.

M A T E R I A L T E S T I N G M E T H O D S
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ADJUSTING RAW DATA

The stress strain response of a typical test are shown at

the right as taken from the laboratory equipment. In its

raw form, the data is not ready for fitting to a

hyperelastic material model. It needs to be adjusted.

The raw data is adjusted as shown at the right by

isolating a stable upload cycle. In doing this, Mullins

effect and hysteresis are ignored. This upload cycle then

needs to be shifted such that the curve passes through

the origin. Remember, hyperelastic models must be

elastic and have their stress vanish to zero when the

strain is zero.This shift changes the apparent gauge

length and original cross-sectional area.

There is nothing special about using the upload curve,

the entire stable cycle can be entered for the curve fit

once shifted to zero stress for zero strain. Fitting a single

cycle gives an average hyperelastic behavior to the

hysteresis in that cycle. Also one may enter more 

data points in important strain regions than other

regions. The curve fit will give a closer fit were there 

are more points.

After shifting each mode to pass through the origin, the

final curves are shown below. Very many elastomeric

materials have this basic shape of the three modes, with

uniaxial, pure shear and biaxial having increasing

stress for the same strain, respectively. Typically

examining the shifted curves, one observes that the ratio

of equal biaxial to uniaxial stress is about 2.
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ANSWERS TO COMMONLY ASKED

QUEST IONS IN RUBBER PRODUCT DES IGN

1. What can one expect from the Finite
Element Analysis?

The quality of the finite element results depends on

several factors including computational technology in

the code, experience and level of understanding of the

analyst, and the interpretation of the results. Deficiencies

in any of the above can lead to erroneous results or a

poor design. However, an experienced analyst, who has a

good understanding of the design process and the

mechanics involved, can use the analysis judiciously as

a verification as well as a predictive tool for better

product and process design.

2. How do analysis and testing
compliment each other?

Testing comes at two different levers:

(i) Material Testing : Depending on the anticipated

deformation, different types of tests can be chosen for

determination of material coefficients. The quality of

results is significantly affected by appropriate choice

of tests and equally importantly, maintaining

material stability with obtained coefficients.

(ii) Product Testing : Several iterations in the

development cycle can be bypassed if the design is

first simulated by analysis. Only incremental changes

will then be necessary to fine tune the prototype.

3. How do you know the answer is correct
in a nonlinear Finite Element Analysis?

Previous experience, laboratory testing, code verification

against analytical solution and simpler problems, and,

above all, the intuition and engineering judgement of

the analyst are the key factors in obtaining an 

accurate answer.

4. Why is Finite Element Analysis
necessary along with testing?

Analysis does not replace component testing, but it will

significantly reduce the product testing for performance

and integrity. Several parametric sensitivity analysis

before the mold design stage can significantly reduce the

development cycle of the product. Typically, analysis and

testing can be used hand-in-hand to iterate for a better

design for manufacturing.

5. Which rubber material data is needed
for nonlinear analysis (Uniaxial,
Equibiaxial, Shear)?

For characterizing the time independent behavior of

rubber, the following tests can be done:

(i) Uniaxial tension or compression

(ii) Equibiaxial tension

(iii) Simple shear

(iv) Planar shear

(v) Volumetric

Calculation of the material coefficients for strain energy

function requires simultaneous fitting to more than one

deformation mode. Besides the uniaxial tension (or

compression), another deformation mode should be

selected depending on the application of the rubber

component. For foam-like materials, a volumetric test 

is required.

To include strain-rate effects into the model

(viscoelasticity), one requires either:

(i) Stress-Relaxation test or

(ii) Creep test

The stress-strain data must be obtained by applying

ramp type loading if damage or stiffness degradation is

to be considered in the elastomer.

Finally, during the fitting of the experimental data, 

care must be taken to insure the positive-definiteness 

of the material matrix as dictated by Drucker’s 

Stability Postulate.

6. How realistically will the code 
simulate multiple deformation modes 
(for example, Tension, Compression, 
and Shear)?

Multiple deformation modes can be accurately predicted

by fitting experimental data of these deformation modes

simultaneously. The kinematics of deformation in 

Marc is general enough to accommodate any

deformation mode.

7. How to incorporate stress relaxation
and creep behavior of rubber in Finite
Element Analysis?

Stress relaxation and creep phenomenon can be

modeled by a finite strain viscoelasticity model in Marc.

The viscous response is characterized by a linear rate

equation leading to a convolution representation

generalizing viscoelastic models. For extremely small 

or very large relaxation times, general finite elasticity 

is recovered.

8. What type of elements should be used
for Finite Element Analysis of
incompressible materials such as rubber?

Typically in elastomeric analysis, the nearly

incompressible material behavior is modeled by using

two- or three-field variational principle giving rise to the

mixed elements. In Marc, either standard displacement

based or Herrmann elements can be used for elastomer

analysis since they treat the incompressibility constraint

the same way. Compressible foam material can be

modeled with standard displacement elements. The

cord-rubber composites can be analyzed by using rebar

elements. Analysis can be done using continuum, shell,

or membrane elements depending on the kinematics of

deformation. Computational efficiency can be obtained

by reduced integration elements (requiring hourglass

control for the lower-order elements). Thermal effects

can be modeled using the heat transfer elements.

Recently, special triangular and tetrahedral elements

satisfying incompressibility conditions have been

introduced to model elastomers.

9. What are the material models available
in the program?

Marc offers a rich library of several material 

models, namely:

(i) Generalized Mooney-Rivlin, Ogden, Boyce-Arruda,

and Gent models for elastomers.

(ii) Foam

(iii) Finite strain viscoelasticity model appropriate for

elastomers and Narayanswamy nonlinear

viscoelasticity model for glass

(iv) User subroutines allow the user to implement

his/her own model (finite strain kinematics

information is passed to the user) which may

include temperature effects or internal variables

in the model.

(v) Discontinuous and Continuous Damage models

to represent progressive stiffness loss, Mullins’

effect, and fatigue behavior of the elastomer.

A P P E N D I X D
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10. What are the major strategies for
getting convergence for a rubber model?

Typically, full Newton-Raphson or secant methods are

used to solve the nonlinear system of equations. When

instabilities, buckling, snap-through phenomenon exist,

then an arc length procedure needs to be used. Marc

includes the full Newton-Raphson as well as arc length

procedure for the analysis.

11. What are the convergence criteria?

Several convergence criterion exist in Marc, based on:

(i) Displacement

(ii) Rotation

(iii) Residual force

(iv) Residual moment

(v) Strain energy

12. How to incorporate damage
phenomena into Finite Element Analysis?

Damage effects can be incorporated in the analysis in

two different ways. In a phenomenological model, the

Kachanov factor for damage can be modified to

accommodate the degradation of material properties

with time through the Marc user subroutine, UELDAM.

Both, Mullin's model for discontinuous damage and

Miehe's model for continuous damage are available 

in Marc.

13. How to consider fatigue in a rubber
Finite Element Analysis?

Fatigue behavior due to cyclic loading and unloading of

a rubber component can be simulated by Marc through

the Continuous Damage Model due to C. Miehe. The

model is available for all elastomeric strains energy

functions in Marc. It allows modeling hysteresis and

progressive loss of stiffness due to cyclic loading

14. How to model a dynamic rubber part
with large deflection?

Small amplitude vibrations superposed on large static

deflection can be analyzed by frequency domain

dynamic analysis. Marc uses the phi-function approach

to modal the vibrations in a sinusiodally excited,

deformed viscoelastic solid.

15. How to incorporate a failure criteria
into a Finite Element Analysis?

Simple fatigue, damage crack growth, and wear models

can be used to analyze failure. Marc offers two different

damage models: discontinuous damage model (to

model Mullins’ effect) and the continuous damage

model (simulate fatigue behavior). Crack propagation is

modeled using the energy release rate method using the

quarter-point elements. The wear models can be

constructed with the information regarding relative slip

between contact bodies and the frictional forces given

out in the program. Several subroutines exist in 

Marc to facilitate the user in developing his/her 

own failure models.

ANSWERS TO COMMONLY ASKED QUEST IONS IN RUBBER PRODUCT DES IGN

57



CONTACT PROBLEMS, STATIC AND

KINETIC FRICTION

Chaudhary, A.B. and K.J. Bathe. “A Solution Method

for Static and Dynamic Analysis of Contact

Problems with Friction,” Computers and

Structures, V. 24, pp. 855-873, 1986.

Kikuchi, N. and J.T. Oden. Contact Problems in

Elasticity: A Study of Variational Inequalities

and Finite Element Methods, Society for

Industrial and Applied Mathematics,

Philadelphia, PA, 1988.

Laursen, T.A. and J.C. Simo. “Algorithmic

Symmetrization of Coulomb Frictional

Problems Using Augmented Lagrangians,”

Computer Methods in Applied Mechanics and

Engineering, V. 108, pp. 133-146, 1993.

Martins, J.A.C., J.T. Oden, and F.M.F. Simoes. “A Study

of Static and Kinetic Friction,” Int. J. Engineering

Sciences, Vol. 28, No. 1, pp. 29-92, 1990.

Martins, J.A.C. and J.T. Oden. “Existence and

Uniqueness Results for Dynamic Contact

Problems with Nonlinear Normal and Friction

Interface Laws,” Nonlinear Analysis, Theory,

Methods and Applications, Vol. 11, No. 3, pp.

407-428, 1987.

Oden, J.T. and J.A.C. Martins. “Models and

Computational Methods for Dynamic Friction

Phenomena,” Computer Methods in Applied

Mechanics and Engineering, Vol. 52, pp. 527-

634, 1985.

Peric, D. and D.R.J. Owen. “Computational Model

for 3-D Contact Problems with Friction Based

on Penalty Method,” Int. J. of Numerical

Methods in Eng., V. 35, pp. 1289-1309, 1992.

Simo, J.C., P. Wriggers, and R.L. Taylor. “A

Perturbed Lagrangian Formulation for the

Finite Element Solution of Contact Problems,”

Computer Methods in Applied Mechanics and

Engineering, V. 50, pp. 163-180, 1985.

Wunderlich et al. (eds), “Formulation of Contact

Problems by Assumed Stress Hybrid Model,”

Nonlinear Finite Element Analysis in

Structural Mechanics, Springer, Berlin, 1981.

FINITE ELEMENT METHOD

Bathe, K.J., Finite Element Procedures, Prentice-

Hall, Englewood Cliffs, NJ, 1995.

Cook, R.D., D.S. Malkus, and M.E. Plesha. Concepts

and Applications of Finite Element Analysis

(3rd ed.), John Wiley & Sons, New York, NY, 1989.

Hughes, T.J.R. The Finite Element Method—Linear

Static and Dynamic Finite Element Analysis,

Prentice-Hall, Englewood Cliffs, NJ, 1987.

Oden, J.T. Finite Elements of Nonlinear Continua,

McGraw-Hill, New York, NY, 1972.

Oden, J.T. (Ed.) Research Directions in

Computational Mechanics, National Research

Council, National Academy Press, Washington

D.C., 1991. ISBN 0-309-04648-3. 

Zienkiewicz, O.C. and R.L. Taylor. The Finite

Element Method (4th ed.) Vol. 1. Basic

Formulation and Linear Problems (1989),

Vol. 2. Solid and Fluid Mechanics,

Dynamics, and Nonlinearity (1991),

McGraw-Hill Book Co., London, U.K.

NONLINEAR ELASTICITY

Ciarlet, P.G. Mathematical Elasticity, North-

Holland Publishing Co., 1988. 

Fung, Y.C. Foundations of Solid Mechanics,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.

Fung, Y.C. Biomechanics: Mechanical Properties

of Living Tissues, Springer-Verlag, New York,

NY, 1981.

Green, A.E. and J.E. Adkins. Large Elastic

Deformations and Nonlinear Continuum

Mechanics, Clarendon Press, Oxford, U.K., 1960.

Ogden, R.W. “Large Deformation Isotropic

Elasticity: On The Correlation of Theory and

Experiment for Incompressible Rubberlike

Solids,” Proceedings of the Royal Society, Vol.

A (326), pp. 565-584, 1972.

Ogden, R.W. “Elastic Deformations in Rubberlike

Solids,” in Mechanics of Solids (Eds. H.G.

Hopkins and M.J.  Sewell), pp. 499-537, 1982.

Ogden, R.W. Nonlinear Elastic Deformations,

Ellis Horwood Ltd., West Sussex, England, 1984.

Tschoegl, N.W. “Constitutive Equations for

Elastomers,” J. Polymer Science, AI, pp. 1959-

1970 , 1971.

Yeoh, O.H. “Phenomenological Theory of Rubber

Elasticity,” Comprehensive Polymer Science,

Ed. S. L. Aggarwal, 2nd Supplement, Pergamon

Press, 1995.

NONLINEAR FEA OF ELASTOMERS—
THEORETICAL DEVELOPMENTS

Argyris, J.H., P.C. Dunne, T. Angelpoulos, and B.

Bichat. “Large Nature Strains and Some Special

Difficulties due to Nonlinearity and

Incompressibility in Finite Elements,”

Computer Methods in Applied Mechanics and

Engineering, Vol. 4, pp. 219-278, 1974.

Atluri, S.N. and E. Reissner. “On The Formulation

of Variational Theorems Involving Volume

Constraints,” J. Computational Mechanics,

Vol. 5, pp. 337-344, 1989.

Bercovier, M., E. Jankovich, F. Leblanc, and M.A.

Durand. “A Finite Element Method for the

Analysis of Rubber Parts. Experimental and

Analytical Assessment,” Computers and

Structures, Vol. 14, pp. 384-391, 1981.

Brockman, R.A. “On The Use of the Blatz-Ko

Constitutive Model for Nonlinear Finite

Element Analysis,” Computers and Structures,

Vol. 24, pp. 607-611, 1986.

Cescotto, S. and G. Fonder. “A Finite Element

Approach for Large Strains of Nearly

Incompressible Rubber-Like Materials,” Int. J.

Solids & Structures, Vol. 15, pp. 589-605, 1979.

Chang, T.Y.P., A.F. Saleeb, and G. Li. “Large Strain

Analysis of Rubber-Like Materials Based on A

Perturbed Lagrangian Variational Principle,” J.

Computational Mechanics, Vol. 8, pp. 221-233,

1991.

Gent, A.N., T.Y.P. Chang, and M.B. Leung. “Fracture

and Fatigue of Bonded Rubber Blocks under

Compression,” Engineering Fracture

Mechanics, Vol. 44, No. 6, pp. 843-855, 1993.

Herrmann, L.R. “Elasticity Equations for Nearly

Incompressible Materials by a Variational

Theorem,” J. AIAA, Vol. 3, pp. 1896-1900, 1965.

S U G G E S T I O N S F O R F U R T H E R R E A D I N G

58



Holownia, B.P. “Comparison Between Finite Element

and Finite Difference Methods for Stress Analysis of

Elastomers,” Plastics and Rubber Proc. and

Appl., Vol. 5, pp. 379-380, 1985.

Key, S.W. “A Variational Principle for

Incompressible and Nearly Incompressible

Anisotropic Elasticity,” Int. J. Solids &

Structures, Vol. 5, pp. 951-964, 1969.

Liu, C.H., Choudhry, S., and Wertheimer, T. B. "Low-

Order Triangular Elements with Volume

Constraints," Modeling and Simulation-based

Engineering , Vol. I, Eds. S.N. Atturi and P.E.

O'Donoghue, pp. 272-277, 1998.

Liu, C.H., Choudhry, S., and Wertheimer, T. B.

"Simulation of Embedded Reinforcements in

Concrete," Engineering Mechanics: A Force for the

21st Century , Proc. of 12th Engineering

Mechanics Conference, pp. 126-129, 1998.

Malkus, D.S. and T.J.R. Hughes. “Mixed Finite Element

Methods—Reduced and Selective Integration

Techniques: A Unification of Concepts,” Computer

Methods in Applied Mechanics and Engineering,

Vol. 15, pp. 63-81, 1978.

Nagtegaal, J.C., D.M. Parks, and J.R. Rice. “On

Numerically Accurate Finite Element Solutions

in the Fully Plastic Range,” Computer Methods

in Applied Mechanics and Engineering, Vol.

4, pp. 153-178, 1974.

Needleman, A. “Inflation of Spherical Rubber

Balloons,” Int. J. Solids & Structures, Vol. 13,

pp. 409-421, 1977.

Oden, J.T. and J.E. Key. “On the Effect of the Form

of the Strain Energy Function on the Solution

of a Boundary-Value Problem in Finite

Elasticity,” Computers and Structures, Vol. 2,

pp. 585-592, 1972.

Padovan, J.F., M. Schrader, and J. Parris. “Buckling

and Postbuckling of Elastomeric Components,”

Rubber Chemistry and Technology, Vol. 63, p.

135, 1990.

Padovan, J., F. Tabaddor, and A. Gent. “Surface

Wrinkles and Local Bifurcations in Elastomeric

Components: Seals and Gaskets. Part I.

Theory,” Finite Elements in Analysis and

Design, Vol. 9, pp. 193-209, 1991. (Also:

Padovan, J.F., K. Johnson, and A. Gent. “Part II.

Applications,” ibid, pp. 211-227.)

Peng, S.T.J., E.B. Becker, and T.M. Miller.

“Computing Deformations of Rubbery

Materials,” NASA Tech Briefs, Vol. 14, No. 9,

September 1990.

Scharnhorst, T. and T.H.H. Pian. “Finite Element

Analysis of Rubber-Like Materials by a Mixed

Model,” Int. J. Numerical Methods in

Engineering, Vol. 12, pp. 665-678, 1978.

Simo, J.C. and M.S. Rifai. “A Class of Mixed Assumed

Strain Methods and the Method of Incompatible

Modes,” Int. J. Numerical Methods in

Engineering, Vol. 29, pp. 1595-1638, 1990.

Simo, J.C. and R.L. Taylor. “Quasi-Incompressible

Finite Elasticity in Principal Stretches,

Continuum Basis and Numerical Algorithms,”

Computer Methods in Applied Mechanics and

Engineering, Vol. 85, pp. 273-310, 1991.

Sussman, T. and K.J. Bathe. “A Finite Element

Formulation for Nonlinear Incompressible

Elastic and Inelastic Analysis,” J. Computers &

Structures, Vol. 26, pp. 357-409, 1987.

Taylor, R.L., K.S. Pister, and L.R. Herrmann. “On A

Variational Theorem for Incompressible and

Nearly Incompressible Elasticity,” Int. J. Solids

& Structures, Vol. 4, pp. 875-883, 1968.

Wriggers, P. and R.L. Taylor. “A Fully Non-Linear

Axisymmetrical Membrane Element for Rubber-

Like Materials,” Engineering Computations,

Vol. 7, pp. 303-310, December 1990.

NONLINEAR FEA OF RUBBER

COMPONENTS—ENGINEERING

APPLICATIONS

Billings, L.J. and R. Shepherd. “The Modeling of

Layered Steel/Elastomer Seismic Base Isolation

Bearings,” Proc. 1992 MARC Users Conference,

Monterey, CA, September 3-4, 1992.

Bretl, J.L. “Implementation of the Elastomer Tearing

Energy Approach in Finite Element Analysis,”

Proc. 1988 MARC Users Conference, Monterey,

CA, pp. 17-34, April 7-8, 1988.

Endo, H. and H. Sano. “Analysis of Rubber Parts for

Automobiles,” (in Japanese), Proc. 10th

Nippon MARC Users Meeting, Tokyo, Japan,

pp. 85-91, May 18, 1990.

Frankus, A. and S. Dhall. “Windshield Wiper Design/

Analysis Using the New MARC Contact/Friction

Capability,” Proc. 1988 MARC Users Conference,

Monterey, CA, pp. 35-45, April 7-8, 1988.

Jyawook, S., R. LaPointe, and G. Le Compagnon.

“Structural Analysis of a Typical Rubber Seal

Section,”  Proc. 131st Meeting of the Rubber

Division of the American Chemical Society,

Montreal, Quebec, Canada, May 29, 1987.

Menderes, H. “Simulation of the Joining Processes

for Structures Made of Elastomers,” Proc. 1988

MARC Users Conference, Monterey, CA, pp. 47-

80, April 7-8, 1988.

Morman, K.N. and T.Y. Pan. “Applying FEA to

Elastomer Design,” Machine Design, Penton

Publishing, Cleveland, OH, pp. 107-112,

October 20, 1988.

Ono, S. “Numerical Predictions of the Curing State

of Bulky Rubber Goods Under Unsteady Curing

Conditions,” (in Japanese), Proc. 11th Nippon

MARC Users Meeting, Tokyo, Japan, pp. 105-

111, June 3, 1991.

Swanson, D.J. “Design and Analysis of an

Elastomeric Constant Velocity Joint Seal,” Proc.

1990 MARC Users Conference, Monterey, CA,

pp. 3-1 to 3-25, Sept. 20-21, 1990.

Tada, H., M. Takayama, and T. Nishimura. “Finite

Element Analysis of Laminated Rubber

Bearing,” (in Japanese), Proc. 11th Nippon

MARC Users Meeting, Tokyo, Japan, pp. 85-92,

June 3, 1991. 

NUMERICAL METHODS

Daubisse, J., “Some Results About Approximation

Functions of One or Two Variables by Sums of

Exponentials,” Int. J. Numerical Methods in

Engineering, V. 23, pp. 1959-1967, 1986.

Press, W.H., S.A. Tenkolsky, W.T. Vetterling, and B.P.

Flannery. Numerical Recipes in FORTRAN,

The Art of Scientific Computing, (2nd ed.)

Cambridge Univerisity Press, 1991.

S U G G E S T I O N S F O R F U R T H E R R E A D I N G

59



RUBBER BEHAVIOR AND

CHARACTERIZATION

Bauer, R.F. and A.H. Crossland. “The Resolution of

Elastomer Blend Properties by Stress-Strain

Modeling—An Extension of the Model to

Carbon-Black-Loaded Elastomers,” Rubber

Chemistry and Technology, Vol. 63, No. 5, pp.

779-791, Nov-Dec. 1990.

Blatz, P.J. and W.L. Ko. “Application of Finite Elastic

Theory to the Deformation of Rubbery

Materials,” Trans. Soc. Rheology, Vol. VI, pp.

223-251, 1968. (Paper describing the “Blatz-Ko

model” for polymers.)

Finney, R.H. and A. Kumar. “Development of

Material Constants for Nonlinear Finite Element

Analysis,” Rubber Chemistry and Technology,

Vol. 61, pp. 879-891, Nov/Dec 1988.

Holownia, B.P. “Effect of Poisson’s Ratio on Bonded

Rubber Blocks,” J. Strain Analysis, Vol. 7, pp.

236-242, 1972.

Lindley, P.B. “Effect of Poisson’s Ratio on

Compression Modulus,” J. Strain Analysis, Vol.

3, pp. 142-145, 1968.

Mullins, L. “Softening of Rubber by Deformation,”

Rubber Chemistry and Technology, Vol. 42, pp.

339-362, 1969. (Paper describing the “Mullins’

effect” in softening of rubber by deformation.)

Nau, B.S. “The State of Art of Rubber-Seal

Technology,” Rubber Science & Technology,

Vol. 60, p. 381, 1987.

Treloar, L.R.C. The Physics of Rubber Elasticity,

Clarendon Press, Oxford, U.K., 1975. (Classic

text on rubber.)

VISCOELASTICITY, HYSTERESIS,
DAMAGE AND FAILURE

Beatty, M.F. “Instability of a Fiber-Reinforced Thick

Slab Under Axial Loading,” Int. J. of Nonlinear

Mechanics, V. 25, N. 4, pp. 343-362, 1990.

Bernstein, B., E.A. Kearsley, and L.J. Zapas. Trans.

Soc. Rheology, Vol. 7, pp. 391-410, 1963.

(Paper describing the so-called “BKZ-shift” in

analyzing polymers.)

Cheng, J.H. and E.B. Becker. “Finite Element

Calculation of Energy Release Rate for 2-D

Rubbery Material Problems with Non-

Conservative Crack Surface Tractions,” Int. J. of

Numerical Methods in Engineering, V. 33, pp.

907-927, 1992.

Christensen, R.M. Theory of Viscoelasticity— An

Introduction (2nd ed.), Academic Press, New

York, NY, 1982.

Clark, S.K. “Mechanics of Pneumatic Tires,” U.S. Dept.

of Transportation National Highway and Traffic

Safety Administration, Washington D.C., 1981.

Ferry, J.D. Viscoelastic Properties of Polymers (2nd

ed.), John Wiley & Sons, New York, NY, 1970.

Govindjee, S. and J.C. Simo. “A Micro-Mechanically

Based Continuum Damage Model for Carbon

Black Filled Rubbers Incorporating Mullins’

Effect,” J. Mechanics and Physics of Solids,

Vol. 39, No. 1, pp. 87-112, 1991.

Govindjee, S. and J.C. Simo. “Transition from

Micro-Mechanics to Computationally Efficient

Phenomenology: Carbon Black Filled Rubber

Incorporating Mullins’ Effect,” J. Mechanics

and Physics of Solids, Vol. 40, No. 1, pp. 213-

233, 1992.

Harper, C.A. Handbook of Plastics, Elastomers and

Composites (2nd ed.), McGraw-Hill, Inc., 1992.

Konter, A., F. Peeters, and H. Menderes. “Analysis of

Elastomeric and Viscoelastic Materials Using

the Finite Element Method,” Proc. FEM’91

Congress, Baden-Baden, Germany, November

18-19, 1991.

Mark, J.E., B. Erman, and F.R. Eirich. Science and

Technology of Rubber, (2nd ed.), Academic

Press, 1994.

Morman, K.N., J.C. Nagtegaal, and B.G. Kao. “Finite

Element Analysis of Viscoelastic Elastomeric

Structures Vibrating About Nonlinear Statically

Stressed Configurations,” Society of

Automotive Engineers, Paper 811309, 1981.

Morman, K.N. and J.C. Nagtegaal. “Finite Element

Analysis of Sinusoidal Small-Amplitude

Vibrations in Deformed Viscoelastic Solids,” Int.

J. Numerical Methods in Engineering, Vol.

19, No. 7, pp. 1079-1103, 1983.

Narayanaswamy, O.S. “A Model of Structural

Relaxation in Glass,” Proc. of Fall Meeting of

Glass Division of the American Ceramic

Society, Bedford, PA, pp. 491-497, March 1971.

Pidaparti, R.M.V., H.T.Y. Yang, and W. Soedel,

“Modeling and Fracture Prediction of Single

Ply Cord-Rubber Composites,” J. of Composite

Materials, V. 26, N. 2, pp. 152-170, 1992.

Radok, J.R.M. and C.L. Tai. “A Theory of Inclusions

in Viscoelastic Materials,” J. Applied Polymer

Science,Vol. 6, pp. 518-528, 1962.

Rivlin, R.S. “Some Thoughts on Material Stability,”

Proceedings of IUTAM Symposium on Finite

Elasticity, Lehigh Univ., pp. 105-122, Aug. 10-

15, 1980.

Simo, J.C. “On A Fully Three-Dimensional Finite-

Strain Viscoelastic Damage Model: Formulation

and Computational Aspects,” Computer

Methods in Applied Mechanics and

Engineering, Vol. 60, pp. 153-173, 1987.

Tabaddor, F. “Rubber Elasticity Models for Finite

Element Analysis,” Computers and Structures,

V. 26, N. 1/2, pp. 33-40, 1987.

Walter, J.D. and H.P. Patel. “Approximate

Expression for the Elastic Constants of Cord-

Rubber Laminates,” Rubber Chemistry and

Technology, Vol. 52, No. 4, pp. 710-724, 1979.

Williams, M.L., R. Landel, and J.D. Ferry. “The

Temperature Dependence of Relaxation

Mechanisms in Amorphous Polymers and Other

Glass Forming Liquids,” J. American Chemical

Society, Vol. 77, pp. 3701-3707, 1955. (Paper

discussing the so-called “WLF-shift” in

analyzing polymers.)

Yeoh, O.H. “Characterization of Elastic Properties of

Carbon Black Filled Rubber Vulcanizates,”

Rubber Chemistry and Technology, Vol. 63,

No. 5, pp. 792-805, 1990. (Paper discussing the

“Yeoh model.”)

S U G G E S T I O N S F O R F U R T H E R R E A D I N G

60



61

MSC.Software Corporation is a leading
provider of mechanical computer-aided
engineering (MCAE) software solutions.
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team greater freedom to innovate design
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Principal software products include
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MSC.Dytran and the MSC.Working Model
product family. MSC.Software also provides
strategic consulting services by partnering
with customers to improve the integration 
and implementation of their 
MCAE technologies. 

The Mechanical Solutions Division markets
the company’s products and services
internationally to aerospace, automotive
and other industrial concerns, computer and
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MSC.Software's strong reputation has
earned it the business of many blue-chip
companies, including BMW,
DaimlerChrysler, Fiat, GM, Ford, Nissan,
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In addition to being a leader in providing
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MSC.Software has moved to package its
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becoming more Internet focused by
continuing to make its products Web-
enabled and through the launch of a new
Division and web site, Engineering-e.com.
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